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Discrete-velocity collision dynamics for polyatomic molecules 
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(Received 26 November 1991; accepted 30 March 1992) 

A multispeed discrete-velocity molecular model of a rarefied gas is developed which permits 
quantitatively accurate simulation of mixtures of molecules of different mass which 
have both translational and internal rotational energies. In particular, the molecules are 
represented as having three discrete velocity components and a single discrete internal energy 
that does not directly affect the translational motion. During binary collisions, rotational 
and translational kinetic energies are exchanged according to a phenomenological model. 
Results are presented for the thermal relaxation to equilibrium of mixtures of H, and 
Ne, N2 and 02, and N2 and CO,. Good agreement is found with the corresponding continuous- 
velocity results. 

1. INTRODUCTION 

The Boltzmann equation, an integrodifferential equa- 
tion, describes the evolution of the number of molecules 
having a particular velocity in a flowing gas. Evaluation of 
the collision integral, which describes the gain and loss of 
particles of a given velocity, is notably difficult. The equa- 
tions of radiative transport, which are similar to the Boltz- 
mann equation, can be greatly simplified by supposing that 
light travels along discrete rays or streams,’ thus reducing 
the equations to a set of coupled differential equations. 
That assumption leads to the discrete ordinate method 
used to compute radiation transport through matter.’ 
Gross3 suggested the possibility of applying a discretization 
approach to the Boltzmann equation and Broadwell,4-6 cit- 
ing such ideas, developed a model of a molecular gas in 
which particle velocity components are discrete; the mole- 
cules can move only with velocities ci, which belong to a 
finite set. The evolution of the number of molecules at each 
point in velocity space can then be described by a differ- 
ential equation. Broadwell used two different discretiza- 
tions of velocity space; in one the particles move with unit 
speed in the six directions parallel to the Cartesian axes 
and in the other they move in the eight directions along 
lines at 45” to the axes (Fig. 1) . Particle collisions [where 
particles of type (c;,c,) become particles of type (clocI)] 
were modeled by probabilistic scattering rules that were 
incorporated into the gain and loss terms of the equation. 
The collisions, -which exactly conserve mass, momentum, 
and energy, only occur between particles that lie on dia- 
metrically opposite sides of a unit sphere centered at the 
origin of velocity space. Broadwell studied shock wave 
structure and low Mach number Couette and Rayleigh 
flows; in both cases, unexpectedly good correspondence 
between the extremely simple model and more refined the- 
ory was found. 

For this model, Caflisch and Papanicolaou’ have since 
derived Euler and Navier-Stokes equations and Caflisch8 
has investigated shock wave profiles. A general discussion 
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of discrete-velocity gases, including the Broadwell model, 
is given in the monograph by Gatignol’ and the review 
paper by Platkowski and Illner,” with particular emphasis 
on the mathematical subtleties. Recent studies of the 
discrete-velocity Boltzmann equation have investigated the 
relationship between the resulting continuum fluid trans- 
port coefficients and their corresponding continuous- 
velocity values,” and have greatly expanded the volume of 
velocity space that can be considered.12**3 

If space and time are discretized, a discrete-velocity 
model may be simulated as a cellular automaton (CA). In 
such a simulation, particles travel along links between lat- 
tice sites in space and collide with other particles encoun- 
tered at those sites. The simplicity of the set of collision 
rules that specify collision outcomes which may conve- 
niently be simulated generally restricts the CA models to 
low velocity resolution, that is, only a few velocities. Also, 
for technical reasons, an exclusion principle requiring that 
two particles may not occupy the same point in phase 
space is applied to each lattice site. CA simulations model 
an inherently compressible gas, but when it is desired to 
avoid the pathologies resulting from compressibility they 
have generally been applied in the low Mach number, in- 
compressible limit. 

CA methods have been applied to several problems, 
including shear flow between parallel plates,14 shock 
waves,t5 the Rayleigh problem and flow over a flat plate 
normal to the flow,t6 flow about a cylinder and Kelvin- 
Helmholtz instability,” and for reactive systems. ‘* The ad- 
vantages of the CA are that simulations can be performed 
quickly using Boolean algebra and may even be directly 
computed in specialized hardware. Additionally, because 
flow boundaries can be easily specified, complex geometries 
can be simulated.” The drawbacks are that the methods 
may not be more efficient than conventional finite- 
difference techniques for continuum flows and may not 
yield results consistent with the Navier-Stokes equations; 
low resolution of phase space can lead to spurious conser- 
vation laws.“’ and to anisotropy of the stress tensor.” Also, 
to simulate a gas pressure that is independent of flow ve- 
locity it is necessary to consider particles having many 
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0.) (b) 

FIG. 1. Two Broadwell models: (a) single speed particles move only 
along Cartesian axes, (b) single speed particles move at 45” to axes. 

velocities. Yet, few CA models beside those of Nadiga 
et al. is and Chen et al. u . m&de multispeed particles. 

II. INTEGERIZED VELOCITIES 

The molecular models treated in the present work were 
introduced by Goldstein et a1.,23 where the Broadwell 
model was generalized, and by Goldstein and Sturtevant.24 
Many details of the model are provided in Goldstein25 and 
large-scale unsteady two-dimensional simulations using the 
discrete-velocity model are discussed in Goldstein.% In 
those works the evolution of a flow is modeled, as first 
described for continuous velocity particles by Bird,” by 
independently computing molecular motions and collisions 
in separate phases of each time step. Since those papers 
described the movement of monatomic hard-sphere 
discrete-velocity particles and their interaction with 
boundaries, this paper will concentrate only on the colli- 
sions between particles. We note that by employing the 
model of particle movement, we can treat a variety of 
schemes that bridge the gaps between the most basic 
discrete-velocity models, cellular automata, and 
continuous-velocity approaches. Whereas in Broadwell’s 
original model, only one type of collision and one particle 
speed are considered, in these recent papers all collisions 
which exactly conserve mass, momentum, and energy are 
considered and any discrete particle velocity is possible. 

The model is extended here to permit the simulation of 
mixtures of different species of molecules having different 
numbers of internal rotational degrees of freedom, different 
masses and diameters, and that interact through inverse 
power-law repulsive ( l/rV) force fields. These extensions 
are based on the incorporation of the Borgnakke-Larsen” 
phenomenological model of energy exchange and the vari- 
able hard-sphere molecular method which Bird29 now in- 
cludes in his model. While the general aim of the present 
investigations is to use the discrete-velocity models in a 
Monte Carlo particle simulation of rarefied gas flows, the 
models may have applications in finite-difference solutions 
of the discrete Boltzmann equation,‘513 Monte Carlo solu- 
tions of the collision integral of the Boltzmann equation,30 
extensions of rarefied flow calculations well into the con- 
tinuum flow regime,26 and simulations of compressible 
and/or multispecies flow with cellular automata. 

The model begins with the following assumptions, the 
first three of which are also assumed by the direct simula- 
tion Monte Carlo (DSMC) approach of Bird.27*31 

(a) In every particle collision, mass, momentum, and 
energy are exactly conserved. 

(b) Particle collisions are binary (although ternary 
collisions might later be incorporated to handle chemis- 
try). 

(c) Particle scattering is spherically symmetric in the 
center-of-mass frame as though the molecules were hard 
spheres. Interparticle force fields are modeled by varying 
the particle cross sections in the selection of collision 
pairs.29,32 

(d) Both before and after each collision, particles may 
have only discrete-velocity components [i.e., c= (i, j, k), 
where i, j, and k are integers] and internal energies. 

(e) Particles have mass ratios that are rational frac- 
tions (i.e., i/j). 

We wish to create a model that can accommodate a 
variety of realistic gases and produce adequate solutions of 
rarefied flow problems. It is also desired and expected that 
the model will produce results that agree with continuous 
velocity solutions if a fine enough discretization of velocity 
space is used. The model must accommodate a method of 
computation that is reasonably efficient in terms of com- 
putation time and memory for problems in two or three 
spatial dimensions. Finally, it is desirable that the model be 
suited for the new parallel computer architectures. 

HI. INITIAL CONDITIONS 

When the velocity components of the molecules are 
discretized with a unit speed q, the velocity distribution 
function is not continuous but is an approximation consist- 
ing of a series of delta functions. For high-temperature 
gases, the velocity distribution function is “wide,” and 
many molecular speeds occur, while for cold gases, the 
velocity distribution function is “narrow,” so only a few 
molecular speeds occur. While all integer molecular speeds 
can be present [up to the value implied by the size of the 
variable used to store the velocity component on a com- 
puter), they occur with a distribution determined by the 
local temperature. 

Consider a collection of N particles having velocities 
( uj, up wi) where i is the particle index. All particles oc- 
cupy cells in physical space of volume V small compared to 
both a flow field scale length and the local mean-free path. 
Assume for simplicity that there are only two types of 
particles present: species a particles having a mass of m, 
and (a internal rotational degrees of freedom, while species 
b particles are characterized by mb and &,. Here m,, cab, mb, 
and cb are all non-negative integers, &<mb, and c&l. We 
use the variable hard-sphere gas model of Bird29932 in 
which, for the purposes of computing collision probabili- 
ties, the particle diameters are changed depending on the 
relative collision speed to produce the correct temperature 
dependence of viscosity in an equilibrium continuous ve- 
locity gas. In each interspecies collision, however, the ratio 
of the diameters of a particle of species a to a particle of 
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species b is a constant, D. The parameter describing the In the Monte Carlo simulations discussed below, the 
power-law dependence of viscosity on temperature is w, particle cross sections and initial equilibrium gas tempera- 
and it is related to the exponent r] of an inverse power-law 
molecular interaction potential by 

ture, rc, are normalized with a chosen equilibrium variable 
hard-sphere mean-free path ilo and collision frequency vc. 

w=2/(7+ 1). (1) From Bird,27J32 we find these values to be 

1 
PO (2--O) --O 

i 

1 abb 
*a”=~ r(2--w) 1+ (nodno,l)K 

=* 

where l? is the gamma function, PE TdT,,, Tref is a reference temperature, KS $( 1+2/D+ l/D*), and 

h-To n$$j 1 1 I 
-iy=TG [P”(2-w>“r(2-w>]z 

(2) 

(3) 

The particle number density is n; subscript zeros refer 
to the initial equilibrium state; k is the Boltzmann 
constant and d is a particle diameter (da,= Ja,,/7T, dbb 
= J&7-G). 

If kT/mb=RbT is greater than about 2q*, it is sufi- 
ciently accurate to take the equilibrium distribution of dis- 
crete velocities to be equal to the Maxwellian distribution 
at the same temperature [i.e., f,(u) cc exp( - u*my’2kT)]. 
At lower temperatures the discrete-velocity distribution, 
found by equating the gain and loss collision terms of the 
discrete Boltzmann equation and iteratively solving the re- 
sulting set of algebraic equations,i2 should be used. The 
discrete distribution closely resembles a Maxwellian except 
at the lowest temperatures (e.g., less than 0.542). 

IV. CHOICE OF COLLISION PARTNERS 

During a period of time that is small compared to the 
mean collision time ( l/vo), the probability that two given 
particles in volume V will collide is proportional to the 
fraction of that volume swept out by their trajectories in 
the center-of-mass frame. Particles on exactly parallel tra- 
jectories, possible in a discrete-velocity gas, cannot collide. 
An acceptance/rejection scheme is used to obtain, on av- 
erage, the correct equilibrium distribution of collision rel- 
ative velocities. The collision procedure is to first choose a 
pair of particles at random. Suppose one particle is of spe- 
cies a and the other of species b. The value of 
cob &?kzb @max is then compared to a random number 
0 < Rf< 1 and the particle pair is rejected if Rf is greater 
than this ratio and no collision is counted; a new pair is 
then chosen. The subscript max indicates the maximum 
such value found in V. Here, 

Obb=~TT(daa+dbb)2{mrC~/[2(2-W)kT,,f]}-W,. (4) 

a cross section which decreases as the relative collision 
speed increases;‘g m, is the reduced mass and 

&= (5) 
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Since the velocity components are integers, c; is also an 
integer and it can be used as an index to access all reason- 
able values of E and o&, from precomputed arrays. 

V. COLLISION DYNAMICS 

Once the colliding pair has been chosen, the outcome 
must be determined. In the model gas of polyatomic mol- 
ecules? a fraction x of the collisions will be inelastic-there 
will be an exchange of internal and translational energies; x 
is the inverse of the rotational collision number. The value 
of ,y will be taken to be constant2g’31 although a value that 
varied with collision energy33 and colliding species would 
be more accurate. For the present, however, we are inter- 
ested in comparing the discrete-velocity model to the 
continuous-velocity model and will use the same value of x 
in both. For simplicity, let us first consider the elastic col- 
lisions in which no exchange occurs. 

A. Elastic collisions 

A collision can be described in a three-dimensional 
velocity space in which the velocities of the two particles 
initially lie at two different integer points II, and IQ. In Fig. 
2 an example in two dimensions is presented. The relative 
velocity c,. is u,-uI, and the center-of-mass velocity 
C =[l/(m,+m b)] (maua+ mbub) ties along the relative 
vzocity, closer to the velocity of the more massive particle. 
The possible values of c,, range over [l/(m,+m,)](i,j,k) 
for all integers i, j, and k but do not necessarily take on 
integer values themselves. They form a subgrid in velocity 
space on which c,, may lie which can be used to identify 
the points on the main grid that are valid post-collision 
velocities. Because mass and momentum are conserved, c, 
remains unaltered by the collision. Hence, the vector c, 
simply pivots around ccm, as shown by the large circles in 
Fig. 2. For molecules moving in a three-dimensional veloc- 
ity space, we would be concerned with the analogous 
spheres indicating the possible collision outcomes. 

Since we have supposed that there is no exchange of 
internal and relative translational energy, ] c,] also remains 
unchanged. Because we have assumed [assumption (c), 

David 6. Goldstein 1833 

Downloaded 28 Jun 2012 to 146.6.103.165. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



0 1 2 ? 4 5 6 7 8 9 
UC7 Ub u 

FIG. 2. Valid velocities are indicated by small circles. Solid lines indicate 
main grid, dotted lines cross at subgrid points. Mass ratio is 2/3, cmv is 
the center-of-mass velocity. 

above] isotropic scattering in the center-of-mass frame, the 
post-collision particle velocities can simply be chosen ran- 
domly from among the discrete points in (V, K IV) which 
lie on opposing points on the surfaces of the two concentric 
constant energy circles (spheres in three dimensions) that 
are centered on c,,. A look-up table containing the points 
on spheres of a given squared radius that are centered at 
the origin is precomputed. Here ] c,.] ’ is used to access the 
correct size sphere from the table and a random point on 
the sphere can be rapidly determined.23725 The point is then 
translated back to its correct location relative to c,. 

The random choice of points is simply a first approx- 
imation to isotropic scattering. It has been found2g932*34 in 
continuous-velocity models that whether isotropic scatter- 
ing or a more accurate determination of the scattering an- 
gle is used, there are only small effects on the macroscopic 
flow quantities. In the discrete-velocity gas, if a sufficient 
number of discrete points are available on the collision 
spheres, nearly isotropic scattering occurs for the gas as a 
whole.23 If there are few points, however, the collision out- 
comes become notably anisotropic and the original veloc- 
ity, always a possible outcome, is found to be chosen too 
often. Such a collision is ineffective or null. When a null 
result is obtained in a multispecies collision we try once 
more to pick a random point on the sphere. Since each 
random choice is time consuming and each additional pick 
provides diminishing returns, we try only this one addi- 
tional time to pick a non-null point. Sometimes for small 
collision spheres a null collision is unavoidable. 

Let us consider this procedure in more detail with a 
numerical example. In the sample collision shown in Fig. 2 
a mass-2 particle initially has a velocity u,= ( lq,2q,Oq) 
while a mass-3 particle has a velocity IQ,= (5q,7q,Oq). The 
center-of-mass velocity is (3$q,5q,Oq). The candidates for 
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outcome discrete velocities are indicated by the small open 
circles on the perimeter of the large circles. A test post- 
collision relative velocity ct is drawn at random from the 
look-up table for a sphere having a squared 
radius= rnic: = 164. That is, we consider a sphere which 
lies not on the main velocity grid but on the velocity sub- 
grid indicated by the intersections of the tine dotted lines in 
Fig. 2. The subgrid sphere is centered at c, and is the 
sphere of the heavy particle. [Thus, the coordinates of the 
heavy particle in the subgrid system = m,c, 
= (8q’, lOq’,Oq’ ) and the coordinates of the light particle 
are = -mbcr= ( - 12q’,- 15q’,oq’) 
cates subgrid.] If both vectors 

m&-?-m&,-cc, mbCt 
(m,+mb) 

and - 
ma 

are composed of only integers, then 

where a prime indi- 

(6) 

c, is accepted. Other- 
wise, a new test point on the same subgrid sphere is chosen. 
As seen in the figure, in the (U, I’) plane the only valid c, 
are (4q,5q,Oq) and (4q, - 5q,Oq). The post-collision veloc- 
ity of the heavy particle is [from Eq. (6)] (m,c, 
+ mbcb-c,)/(m, -t mb); the velocity of the light particle is 
found from the conservation of momentum. This proce- 
dure is time consuming because the acceptable fraction of 
c, drops off rapidly as (m,+mb)/m increases where m is a 
unit mass. The acceptable fraction also increases slightly 
with greater velocity resolution for small values of 
(m,+mh)/m but decreases slightly for large values of 
(m,+m,)/m. In this particular two-dimensional example, 
there are eight intersections of the heavy particle circle 
with the subgrid [( *8q’,A IOq’) and ( f IOq’, *8q’)], of 
which only two are acceptable. Much time is saved if the 
results of all possible division and modulus operations are 
precomputed and stored in small arrays. While it is possi- 
ble to reduce the computational time substantially by cre- 
ating a look-up table containing the results of the entire 
computational process (the valid values of c, for all possi- 
ble c, and species combinations), the table would probably 
consume a prohibitive amount of computer memory. 

The procedure for this inverse problem of efficiently 
finding points on the surface of a sphere is simpler if the 
particles have the same mass. The other points can then be 
quickly found without resorting to any acceptance/ 
rejection technique.25 

B. Collisions with internal energy exchange 

Although the rotational internal energy of the mole- 
cules in a real gas is distributed between 6 degrees of free- 
dom, that distribution does not directly effect particle mo- 
tions and, hence, does not effect the macroscopic flow 
quantities. In the present model each particle simply has its 
three components of velocity and an integer variable indi- 
cating the total amount of internal energy. This is termed 
an energy sink model.31 

To distribute the collision energy between the internal 
and translational modes we adopt the method of Bird29 
who uses the variable hard-sphere molecular model and 
the Borgnakke-LarsenIs phenomenological model of en- 
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ergy exchange. In the BorgnakkeLarsen model the post- 
collision energy is first distributed between the internal and 
translational modes with the equilibrium distribution 
known from theory. The internal energy is then split be- 
tween the two particles, again based on the equilibrium 
distribution. The assumption is that while the gas as a 
whole is not in equilibrium, each collision yields an equi- 
librium distribution of energies and velocities in the center- 
of-mass frame. 

In the Borgnakke-Larsen model the maximum possi- 
ble value of ( CT 1 2 is 

Icr*I~ax=(2/m,)(4m,lcr12+~,~~b)r (7) 

where E is the internal energy of a molecule. The super- 
script * indicates a post-collision value. The probability, 
P( I cT I 2/ I c,] t,,), of I c: I “/I c,] k,, occurring in an equi- 
librium gas is found in Bird.29 To save time, P( I CC I’/ 
I cr] 2,) can be precomputed for a modest number of val- 
ues and stored in an array and the actual value found by 
interpolation. If a randomly chosen value for 1 c: I ’ yields a 
probability greater than Rf, that I c: I 2 is accepted. Other- 
wise a different such ]cF12 is selected. On average, this 
acceptance/rejection procedure yields the equilibrium dis- 
tribution of energies given by P( 1 cf I 2/ ( cr] k,,). 

Adapting the selection of an appropriate sized collision 
sphere to the discrete-velocity model is difficult. When the 
relative translational energy, that is, the size ( I c,I ) of the 
spheres is to be changed, the new sphere chosen must have 
some allowed point(s) on it. For there to be any points on 
the new sphere, it is necessary and sufficient that the new 
sphere be of the same class as the original sphere. In using 
the term “class” we mean that the center-of-mass velocity 
must lie in the same place in a unit cell in velocity space. 
That is, 3-t Iu,I,Iu,I,Iw, I hodiI(m,+mdhl= (d%y), 
then (Ju~I,Iu~I,Iw~I)mod[( m,+mb)/m]mustalsohave 
the same components CY*, fi*, and y”, though not necessar- 
ily in the same order [for example, (a*,fi*,y*) = (p,~~,a)]. 
Components a, 6, and y can be integers ranging between 0 
and [(m,-t-mb)/m]/2. (If cx4[(m,+mb)/m]/2 then 
a e [(ma+ m,)/m] -a. Similarly for /? and y.) Values of 
a, and y all less than 10 are adequate if 
[(mQ$mb)/m] ~21. (As will be seen, larger masses will 
not be generally practical.) While spheres of a given size 
may have more than one class, spheres of the same class 
tend to be spaced evenly in energy (for example, if 
[(m,+mb)/inl==% class (a*,D*,y*) = (1,2,2) spheres 
may be found at I c,I 2= 9 + 8i for positive integers i while 
class (a*$*,~*) = (2,2,2) spheres are found at 
I c,]‘= 12+32i). 

There may be gaps in this spacing, however, particu- 
larly for small spheres [e.g., I c,.] 2=25 is not of class 
(a*,fl*,y*) = ( 1,2,2)]. Because of this, choosing I c,* I 2 ran- 
domly from among those possible produces a bias toward 
larger values of I c,* ] 2/] c,.] “,,,. This bias can be effectively 
eliminated by weighing the choice of ] cr 1 2 by the proxim- 
ity of the neighboring spheres of the same class. We define 
this probability as 

P neigh= (ApB)/C (8) 

where A=A 1~71~ to next highest ]c,*J2 with the same 
class, B= A [ c: ( ’ to next lowest 1 cp ] 2 with the same class, 
and C is the minimum spacing between I CT I 2 of this class. 

If the particles are of the same mass a second less 
important type of bias is introduced because I c,.] “,,, is al- 
most always of the same class as I c, I 2 and is thus chosen 
too frequently; any other value of I CT I 2 can only be chosen 
about one time in four. To remedy this bias it is necessary 
to reject half of the lcT12 choices when ]cF12= ]c,.I&, 
This has little effect on the time of computation since it 
occurs rarely. 

Hence, to efficiently find the other spheres from which 
to choose the post-collision translational energy, fm,.l c: I ‘, 
we simply choose randomly from among those spheres of 
the correct class because the choice is random in the 
Borgnakke-Larsen model. Each sphere is then subject to 
acceptance/rejection with the probability P( 1 c: I ‘/ 
I c,] i,,) P neigh- The classes of each sphere and the values of 

Pneigh can be stored in small arrays. 

C. Distributing internal energy between the particles 

The collision energy remaining after the translational 
energy is accounted for is then split between ea and eb 
Since this energy e,,tl is an integer, E, and eb may also be 
integers. If one particle is monatomic, the other receives all 
of the internal energy. Otherwise, the probability29 of 
CYdoll is used in a simple acceptance/rejection scheme to 
determine e,*. The complicated probability function 
P(E~/E& can again be interpolated from a modest pre- 
computed array. Finally, the remaining internal energy is 
assigned to e$. 

Vi. RESULTS 

We investigate the relaxation of a spatially homoge- 
neous gas to thermal equilibrium and only consider the 
collision process. The calculations were performed on a 
SUN Sparcstation. In the first example the gas is a mixture 
of CO2 and N2. Assume that at t=O the CO2 is ten times 
hotter than the N2 and that both gases are and will remain 
rotationally fully excited for the range of temperatures con- 
sidered. The mean velocity of each gas is zero. As collisions 
occur, the temperatures of the two gases will equilibrate. 
The species mass ratio is 7/l 1 (~0.64), which we will 
approximate as 2/3( -0.67). Both species have two rota- 
tional degrees of freedom, which is appropriate for a CO, 
temperature less than about 120 K. There are equal num- 
bers (50 000) of molecules of each species and w=O.33, 
D=0.752.29 We assume, as have others,35P36 that only one 
collision in five causes the exchange of internal and trans- 
lational energy (that is, x=0.2) and that all other colli- 
sions are elastic. This probability of exchange is in fair 
agreement with experimental data.37 Four temperatures 
(for definitions of the different temperatures, see Bird3t), 
two translational and two rotation, of interest are 
T lv,,transt T Co2,trans~ TN,,rOt, and Tco2,rov The evolution of 
these temperatures, normalized by the equilibrium temper- 
ature, with the number of collisions per particle (i.e., one 
collision time implies Ne collisions), is plotted in Fig. 3. 
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FIG. 3. Relaxation of CO, and N2 to equilibrium. FIG. 5. Relaxation of H2 and Ne to equilibrium. 

Integer velocity (IDSMC) results are compared to the so- 
lution found with the continuous-velocity DSMC method 
of Bird in which the correct particle masses (7 and 11) are 
used. [In a comparison (not shown) between DSMC cal- 
culations with a mass ratio of 7/l 1 and a ratio of 2/3, the 
solutions agree to within 1%. The solution is found to be 
fairly insensitive to the exact mass ratio specified.] It is seen 
that the IDSMC and DSMC solutions correspond very 
well. Only moderate velocity resolution was necessary 
(kT,t, = 36.4q2 or initially about =+=22q velocities in each 
direction for the CO2 molecules and about f 8q velocities 
for the NZ molecules) in order to obtain this agreement. 

In Fig. 4 is the distribution of discrete internal energies 

FZ IDSMC Distribution 
Theory 

6b.O do.0 
Internal Energy 

FIG. 4. Equilibrium internal energy distribution of N2 
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for the N2 at equilibrium compared to the theoretical dis- 
tribution V(E) cc e@-’ exp ( - dkT)] corresponding to 
the same total internal energy. Again, the results agree 
well. 

Consider now the simulation of the relaxation to equi- 
librium of a mixture of H2 and Ne in which the ratio of 
particle masses is 1:lO. The hydrogen has two rotational 
degrees of freedom and the neon has none. Again we sim- 
ulate 100 000 molecules, w =O. 16 and D= 1.06. Even 
though high velocity resolution was used (kTtota1=206q2 
or initially A32q velocities in each direction for both the 
H, and the Ne molecules), in Fig. 5 it is clear that the 
IDSMC molecules relax too slowly. This error is due to the 
large mass ratio that produces multispecies collisions in 
which the inner collision sphere for the more massive Ne 
has few intersections with the discrete velocity lattice and 
many of the collisions are null. Often, in fact, only the 
original velocity is a possible outcome. Increasing the ve- 
locity resolution reduces the error. As in the first example, 
the probability of exchange of internal and translational 
energy x is again chosen to be 0.2. 

When many of the collisions are null, the assumption 
that the relative velocity is rotated through a random angle 
is invalid and the collision results are anisotropic. To a 
certain extent, however, the occurrence of a zero deflection 
collision represents simply a small deflection collision so 
some null collisions are allowable. Figure 6 shows how the 
fraction of null collisions in the mixture as a whole varies 
with the velocity resolution for the three different gas mix- 
tures (at equilibrium) discussed herein. In low-speed col- 
lisions there are simply few points on the collision spheres 
and a null collision is likely. The probability of a null col- 
lision decreases with increasing velocity resolution because 
the average size of the collision spheres increases (i.e., the 
mean relative collision energy oc T). Other measures of 
collision anisotropy are given in Refs. 23 and 25. In a 
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collision in which there is an internal energy exchange, the 
outcome relative speed is nearly always different from the 
input so virtually none of those collisions are null. Thus if 
the probability of exchange were greater, the IDSMC and 
DSMC results would correspond better. Indeed, for ,y= 1 
even with a mass ratio of ten, the discrete- and continuous- 
velocity results are nearly indistinguishable (probability of 
null collisions is about 0.016). A value of x that high is 
unrealistic, however. 

VII. DISCUSSION 

A discrete-velocity model of particle collisions in rar- 
efied flows has been studied theoretically and through nu- 
merical experiments. The investigation was motivated by a 
desire to understand the fundamental physics of a  discrete- 
velocity gas and by the need to link discrete-velocity mo- 
lecular models to accepted continuous velocity models. A 
new molecular model has been developed to permit such a 
l inkage and has been implemented in the integer direct 
simulation Monte Carlo method. The method, in combi- 
nation with earlier particle movement models, may also be 
an acceptable engineering tool to extend particle simula- 
tions toward the continuum flow regime. 

The above procedures use simple integer arithmetic 
throughout the whole collision operation, whereas in the 
standard DSMC approach a substantial number of floating 
point operations are needed. We  note that interpolated val- 
ues from look-up tables and lists of random numbers may 
be used in the DSMC method as well. The basic DSMC 
method, however, runs more slowly than the IDSMC on 
computers which are not highly optimized for floating 
point operations. Table I illustrates the speed up 
( = IDSMC collision rate/DSMC collision rate) of the col- 
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TABLE I. Speed-up obtained with the IDSMC method versus the DSMC 
method. 

Computer OJNz C02/N2 HJNe 

SUN 3/50 5.1 4.0 3.3 
SUN Sparcstation 2.5 1.8 1.7 
SGI 4D/240 1.6 1.2 0.9 
Cray YMP 1.2 0.9 0.6 

lision process obtained with the integer approach for dif- 
ferent gas combinations on four different computers. The 
programs were written in c and were compiled with the 
maximum compiler optimization available. On multipro- 
cessor machines only a single processor was used. 

The differences between computers indicate the im- 
proved relative floating point performance of the more 
powerful machines. Also evident is that for the higher mass 
ratio gas combinations the IDSMC required many rejec- 
tions of trial relative velocities and thus ran slower. As 
discussed below, IDSMC simulations of oxygen and nitro- 
gen assumed the molecular masses were equal. Both codes, 
but the IDSMC in particular, would benefit substantially 
by having faster integer random number generators. On a 
computer with enough memory, tables of pseudorandom 
numbers might be used instead of subroutine calls. 

W ith floating point numbers, the storage per particle 
for a full three( spatial) -dimensional calculation is 3 1 bytes 
( 12 for the 3 components of velocity, 12 for 3 positions, 4 
for internal energy, 2 for the particle index, and 1 for the 
particle type), while with the discrete velocity approach it 
is 14 (3, 6, 2, 2, and 1). Thus, for memory-limited com- 
putations with the IDSMC, flows with up to 2.2 times 
larger Reynolds numbers can be calculated. 

How accurately the discrete velocity model can repre- 
sent rarefied gas flows depends upon how many points 
there are on the collision spheres. Fewer than ten velocity 
components (i.e., f 5  in each direction U, V, W) have been 
found adequate for simulations with a single species mon- 
atomic gas.” Increased values of [(m,+mdm)] produce a 
marked decrease in the number of collision possibilities 
available. Figure 7 shows the average number of points on 
all collision spheres up to [ c,.[ ‘= 100 as a function of 
[(m,+m,,)/m]/gcd where gcd is the greatest common de- 
nominator of m, and mb More often than not, for values of 
[(ma+ mb)/m] > 7 on these small spheres there is only one 
point and the collision must be null. In a simulation in 
which more than 10% to 20% of the collisions are null, 
there is an increase in the diffusivity in the gas which in 
turn affects the macroscopic flow properties (e.g., shock 
waves thickness). Because the size of the look-up table 
grows as ( lc,I,,,m,)3, the high velocity resolution that 
would be required for large values of [(m, + mb) /m] is not 
presently attainable. For example, with the largest look-up 
table used here the entire code took about 3 words on the 
Cray, about one-eighth of its memory. Hence, while some 
real gas combinations can now be simulated [i.e., H./D, 
(ma/mb=2/4=t/2), H,/DH( =2/3), CO,/N,( = 1 l/7 
~33/2), O,/He( -4/l), N,/H,(=7/1)] other combina- 
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FIG. 8. Relaxation of 0, and N2 to equilibrium. 

FIG. 7. Average number of intersections of all spheres with squared radii 
less than lOO$. 

tions in which the mass ratio cannot be approximated by a 
ratio of small integers will remain out of reach as long as a 
look-up table is needed. In particular, a  mixture of 
O,/N,( =8/7), which is of practical significance, is just 
beyond the capability of present course-grained parallel 
hypercube computers when the look-up table is repeated in 
every processor. On the Cray a mixture of 0,/N, can be 
simulated but the most powerful new computers have par- 
allel architectures and are the machines best suited for this 
kind of simulation of fluid flow. Approximating the O2 and 
Nz masses as equal, however, is adequate for some pur- 
poses. For example, in a simulation of thermal relaxation 
similar to those shown above, the error obtained by using 
equal mass particles in the IDSMC simulation rather than 
a mass ratio of 8/7, used in the DSMC, is very small (Fig. 
8) and may be smaller than the error introduced with the 
uncertainty in the other physical parameters, i.e., w and x. 
(In fact, the choice of a  constant value for x rather than 
one which depends on 1 c,[ ’ probably produces a greater 
error.33) W ithout a low mass ratio approximation, compu- 
tations on a parallel processor would require a look-up 
table distributed between the processors. What is needed is 
to minimize storage requirements by eliminating or reduc- 
ing the size of the look-up table by finding another way to 
quickly answer the question: “Given a particular collision 
sphere radius and center-of-mass location in velocity space, 
what are the intersections of the sphere with an integer 
lattice?” or even, “What is one randomly chosen intersec- 
tion of such a sphere with the lattice?” 

The current model assumes that the number of rota- 
tional degrees of freedom of a molecule is constant. While 
the energy levels in the present model are discrete, the 
phenomenological model assumes a form of averaging and 
is only applicable to fully excited modes having many 

quantum states. Thus, the model may be applied to poly- 
atomic gases over only a modest range of temperatures in 
which the ratio of specific heats, y, is nearly constant. For 
example, y= 1.4 for N, only for T  < 500 K. At the lowest 
temperatures, rotational energy should be considered from 
the quantum-mechanical point of view. At higher temper- 
atures internal vibration should be considered. 

The method of incorporating rotational degrees of free- 
dom can be generalized to include vibrational and elec- 
tronic modes as well.38,39 The simulation of vibrational de- 
grees of freedom is a prerequisite for any accurate 
simulation of chemistry, including such simple chemistry 
as dissociation/recombination. The method of changing 
the collision sphere sizes and using an acceptance/rejection 
procedure could remain unchanged. It appears, however, 
that because the energy changes due to vibrational excita- 
tion are so large compared to those of rotation, there could 
again be constraints on the possible species combinations 
because of the requirement for a reasonably sized look-up 
table. Nonetheless, for a modest range of temperatures the 
present discrete-velocity approach without vibrational de- 
grees of freedom can provide quantitatively accurate re- 
sults. 
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