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Abstract 

 

Investigation of a Discrete Velocity Monte Carlo Boltzmann Equation 

Solver 

 

 

 

 

Aaron Benjamin Morris, MSE 

The University of Texas at Austin, 2008 

 

Supervisors:  David Goldstein and Philip Varghese 

 

A new discrete velocity scheme for solving the Boltzmann equation has been 

implemented for homogeneous relaxation and one-dimensional problems.  Directly 

solving the Boltzmann equation is computationally expensive because in addition to 

working in physical space, the nonlinear collision integral must also be evaluated in a 

velocity space.  To best solve the collision integral, collisions between each point in 

velocity space with all other points in velocity space must be considered, but this is very 

expensive.  Motivated by the Direct Simulation Monte Carlo (DSMC) method, the 

computational costs in the present method are reduced by randomly sampling a set of 

collision partners for each point in velocity space.  A collision partner selection algorithm 

was implemented to favor collision partners that contribute more to the collision integral.  

The new scheme has a built in flexibility, where the resolution in approximating the 
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collision integral can be adjusted by changing how many collision partners are sampled.  

The computational cost associated with evaluation of the collision integral is compared to 

the corresponding statistical error.  Having a fixed set of velocities can artificially limit 

the collision outcomes by restricting post collision velocities to those that satisfy the 

conservation equations and lie precisely on the grid.  A new velocity interpolation 

algorithm enables us to map velocities that do not lie on the grid to nearby grid points 

while preserving mass, momentum, and energy.  This allows for arbitrary post-collision 

velocities that lie between grid points or completely outside of the velocity space to be 

projected back onto the nearby grid points.  The present scheme is applied to 

homogeneous relaxation of the non-equilibrium Bobylev Krook-Wu distribution, and the 

numerical results agree well with the analytic solution.  After verifying the proposed 

method for spatially homogeneous relaxation problems, the scheme was then used to 

solve a 1D traveling shock.  The jump conditions across the shock match the Rankine-

Hugoniot jump conditions.  The internal shock wave structure was then compared to 

DSMC solutions, and good agreement was found for Mach numbers ranging from 1.2 to 

6.  Since a coarse velocity discretization is required for efficient calculation, the effects of 

different velocity grid resolutions are examined.  Although using a relatively coarse 

approximation for the collision integral is computationally efficient, statistical noise 

pollutes the solution.  The effects of using coarse and fine approximations for the 

collision integral are examined and it is found that by coarsely evaluating the collision 

integral, the computational time can be reduced by nearly two orders of magnitude while 

retaining relatively smooth macroscopic properties. 
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CHAPTER 1:  INTRODUCTION 

It is well known that the Boltzmann equation can be used to describe non-

equilibrium gas flows where the Navier-Stokes equations fail.  Particular applications 

include problems such as satellite drag, flow within micro-devices, and solving for the 

internal shock structure.  In each of these cases the mean free path is on the same order as 

the characteristic length scale for the problem. 

Direct numerical simulation of the Boltzmann equation via a discrete velocity 

model can be used to describe a non-equilibrium gas flow, but computational costs limit 

its use.  Hence, for flows that span the continuum to rarefied regimes, it would be more 

efficient to use a hybrid solver that restricts the computation of the non-equilibrium flow 

to the rarefied part where it is necessary, and uses the more efficient continuum solver 

where there is little error associated with its use.  A low noise solution is required at the 

interface between the two because statistical fluctuations can contaminate the boundary 

conditions for the continuum calculations.  This is a problem for the Direct Simulation 

Monte Carlo (DSMC) method [1], where instantaneous flow properties are subject to 

substantial statistical fluctuations, especially for transient problems.  Statistical noise 

inherent to DSMC calculations is regarded as one of the major obstacles in developing a 

hybrid solver [2,3].  Since there is little statistical noise associated with the macroscopic 

flow variables in a direct solution of the Boltzmann equation via a discrete velocity 

model, such a method may be more efficient than the DSMC method, particularly for 

transient problems. 

In a discrete velocity model, the infinite velocity space is truncated and 

discretized.  Instead of having a continuum of velocities, a fixed set of discrete velocities 

approximate the velocity space.  For most problems of interest, the combined phase space 
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will have at least 6 dimensions, three components for physical space and three for 

velocity space.  If additional physics are specified, such as chemistry or internal energy, 

the dimensionality of the problem will be larger.  This leads to very expensive 

calculations and consequently the velocity space must be limited to a relatively coarse 

discretization for efficient calculations. 

In addition to discrete velocity methods, probabilistic Monte Carlo techniques 

have been used successfully for the full nonlinear Boltzmann equation.  DSMC solves the 

Boltzmann equation by appealing to the physics of molecular interactions.  DSMC has 

been applied to many problems with complex physics including chemically reacting 

flows with different internal energy modes.  For near continuum flows DSMC can be 

inefficient because a large number of collisions need to be performed.  Monte Carlo 

techniques can suffer from their statistical fluctuations because the error decay rate is of 

the order 1/ 2N − , where N is the number of computational particles.  In order to obtain a 

smooth solution for an unsteady problem ensemble averaging may be used.  It is 

expensive to ensemble average many transient simulations or produce a large single 

output simulation and consequently alternative ways of solving the Boltzmann equation 

are examined. 

Discrete velocity methods have been used in schemes such as the Hicks-Yen-

Nordsieck (HYN) method, [4,5].  Similar numerical strategies have been developed by 

Tcheremisine in [8].  In the HYN scheme, the collision integral is approximated by a 

Monte Carlo method.  To approximate the collision integral, a mean value of the integral 

is computed by sampling a sufficiently large set of N values of the integrand.  Since the 

collision integral is only approximated this scheme does not enforce mass, momentum, 

and energy conservation.  Consequently, the HYN method requires a correction scheme 

to enforce conservation, but these corrections may limit the accuracy of the solution.  
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Alternatively, a discrete velocity model is exemplified by the ∆-ε model [6].  In this 

model, the collisions are performed by a Monte Carlo-like method.  However, in this 

model and similar schemes discussed in [7,9], the post-collision velocities are restricted 

to those that lie on the grid.  Although this scheme enforces conservation of mass, 

momentum, and energy the restricted set of grid-dependent post collision velocities can 

artificially reduce the collision integral when a coarse discretization is used in velocity 

space.  Both the HYN method and the ∆-ε model can be applied to mixed continuum and 

rarefied flow problems but the computational costs are high, especially for high Mach 

number flows.  For a high Mach number flow, the velocity space needs to be very large.  

Different regions of the flow can have vastly different bulk velocities, and simply 

coarsening the domain is not sufficient because the mesh size must be similar for both the 

low and high velocity regions.  Consequently, many grid points are required and this 

leads to a high computational cost. 

The Bhatnagar, Grook, and Krook (BGK) method, [11], can be readily 

implemented in a discrete velocity model where a linearized approximation for the 

collision integral is solved instead of computing the nonlinear collision integral.  The 

BGK collision step drives a non-equilibrium distribution towards a Maxwellian 

distribution computed with the local kinetic temperature, velocity, and mass.  The 

parameter to adjust the rate of relaxation has a somewhat arbitrary definition, where the 

rate of relaxation is proportional to the collision frequency.  Using the BGK 

approximation for the collision integral does not guarantee the correct rate of relaxation.  

Instead it guarantees that the distribution function will relax to an equilibrium 

distribution.  These errors can appear in solving for the shock structure because the shock 

structure heavily depends on the rate at which the gas equilibrates.  The shock thickness 

becomes thinner as the gas equilibrates quicker. 
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The proposed discrete velocity scheme is a further development of previous work 

[12]. A portion of the present work was reported in [13]. Traditional discrete velocity 

Monte Carlo schemes can be limited by the restriction that post-collision velocities must 

lie on the grid and the associated large computational costs.  The proposed scheme 

attempts to address both of these issues.  For collision pairs with small relative velocities, 

there exist few post-collision velocities that lie on the grid.  To overcome this problem, 

we pick an arbitrary orientation of the post-collision velocity vector and use the 

interpolation scheme to map those points back onto the grid.  This interpolation routine 

precisely conserves mass, momentum, and energy and can be extended to points that lie 

entirely outside of the finite sub-set of velocity space that is used in the computation.  

Similar interpolation schemes were developed by Tcheremissine in [14-16] by splitting 

the post-collision component into two parts and accounting for them at two nearby nodes.  

The nodes to be interpolated to are selected such that the symmetry ensures that 

momentum is automatically conserved.  An additional constraint is enforced such that the 

energy is conserved.  Although conservative, this interpolation scheme is valid only for 

uniform velocity grids and does not readily accommodate post-collision velocities that lie 

outside of the velocity space.  Other methods, e.g. [17], have generalized Tcheremissine’s 

interpolation method to non-uniform grids but these schemes introduce slight errors in 

conservation of mass, momentum, and energy.  To eliminate these errors, a correction 

scheme was implemented.   

The nonlinear collision integral is responsible for most of the computational 

effort.  Varghese showed that accurate evaluation of the replenishing integral can be 

obtained using a very coarse approximation, only replenishing to several pairs [12].  In 

this work the depleting integral was evaluated by considering collisions between each 

point in velocity space with every other point in velocity space.  Since accurate results 
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were obtained using a coarse description of the replenishing integral, a coarser 

description of the depleting integral was also developed [13].  To coarsen evaluation of 

the depleting integral, collisions are performed between each point in velocity space with 

a representative set of partners that are chosen randomly.  It was shown that accurate 

results could be obtained for significantly less computational effort by performing 

collisions with a representative set of partners instead of all possible collision partners.  

By varying how many collision partners are sampled, one can control how accurately to 

evaluate the collision integral depending on noise requirements.  This scheme was then 

applied to a set of spatially homogeneous relaxation problems and now to a 1-D unsteady 

problem. 

NUMERICAL TESTS 

Exact solutions to the Boltzmann equation are rare.  Since the major 

computational difficulty lies in evaluating the collision integral, a series of homogeneous 

relaxation tests are performed first.  If a distribution that is initially Maxwellian is 

allowed to relax through collisions it should remain invariant because the Maxwellian 

distribution is the equilibrium distribution.  This implies that all moments of the 

distribution should remain constant.  Constancy of the first few moments indicate mass, 

momentum, and energy conservation.  Conservation of higher moments reflect 

preservation of more subtle details of the distribution, especially the high velocity tails.  

These are minimum tests of a scheme.  Note that the BGK approximation, for example, 

can pass these tests even though it is not an accurate solution to the collision integral for a 

non-equilibrium distribution.  One particular example of an exact analytic solution to the 

time-dependent spatially homogeneous Boltzmann equation is for the Bobylev Krook 

Wu, BKW, distribution, [18,19].  Thus this solution can be used to assess how accurately 

the collision integral is calculated for an initial distribution that is far from equilibrium. 
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Once the homogeneous test cases were verified, the scheme was then applied to a 

moving 1D shock wave.  1D shock wave problems have commonly been used to test the 

validity of different numerical schemes, and shock wave profiles have been well 

documented for various intermolecular potentials [1,20,21].  To generate the shock wave, 

a gas initially moving to the left encounters a specular wall.  A shock wave then 

propagates to the right, bringing the gas to rest while raising the temperature and density.  

Jump conditions are compared to the Rankine-Hugoniot conditions and the internal shock 

structure is compared to DSMC solutions.  The characteristic parameters of the shock 

structure compared are the maximum-slope shock thickness measured on the density 

profile and the shift between the temperature and density profiles. 
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CHAPTER 2: THEORY 

In the following chapter, a brief survey of the theory behind the velocity 

distribution function and Boltzmann equation is first presented before developing the 

numerical method used to solve the Boltzmann equation. 

Section 1:  Velocity distribution Function 

From a molecular viewpoint, a gas is made up of many particles moving 

chaotically [22].  If the molecular diameter is small relative to the mean free path, then 

the gas is dilute.  For a dilute gas, collisions are infrequent events that instantaneously 

change the velocity of a particle and most of the collisions are binary.  Within a small 

volume, there exist N molecules traveling with different velocities.  The velocity 

distribution function,ϕ , defines how many molecules inside of the small physical volume 

have a velocity between η
�

 and dη η+
� �

.  If one scales ϕ  by the local number density the 

resulting distribution, f, is the single particle velocity distribution function.  This 

distribution defines the probability of a molecule having a velocity within η
�

 and dη η+
� �

.  

From this distribution, it is possible to compute all macroscopic variables of interest.  The 

first three moment equations for number density, velocity, and temperature are: 

 n dVη

η

ϕ= ∫  2.1.1a 

 
1

i i
u dV

n
η

η

η ϕ= ∫  2.1.1b  

 ( )
22

3 3
i i

B B

m m
T C u dV

k k n
η

η

η ϕ= = −∫
___

 2.1.1c 
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In addition to computing the density, momentum, and energy the distribution 

function also can be used to compute the heat flux, shear stress, and entropy. 

 ( )( )
21 1

2
j j j i i

q m u u dV
n

η

η

η η ϕ= − −∫  2.1.1d 

 ( )( )1
ij i i j j ij

u u dV p
n

η

η

τ ρ η η ϕ δ= − − − +∫  2.1.1e 

 
3

3
ln

B B

h
s k N k V dV

m
η

η

ϕ ϕ
 

= −  
 

∫  2.1.1f 

In equation 2.1.1f, h is Planck’s constant and N is the number of molecules within 

volume V.  Further discussion on the definition of entropy can be found in [22].  It is 

common to refer to the various macroscopic properties as moments of the distribution 

function.  The k
th
 moment, defined as kQ , of the distribution function is given by: 

 
1 kk

i i

V

Q u dV
n

ηη ϕ= −∫  2.1.2  

The temperature is proportional to the 2
nd

 moment of the distribution and the heat flux is 

proportional to the 3
rd

 moment. 

SCALING THE MOMENTS OF THE DISTRIBUTION FUNCTION: 

 It is often convenient to work with scaled variables.  Velocities are scaled by a 

characteristic thermal speed, ηr, distances are scaled by a reference mean free path, and 

time is scaled by a reference collision time.  The speed ηr has a physical meaning in that 

it is the most probable speed for a gas in equilibrium at a reference temperature. 

 
2

b r
r

k T

m
η =  2.1.3 

The reference temperature and density are defined as 
r

T  and 
r

n .  The reference mean free 

path is computed via 1 ( )
r r r

nλ σ=  where 
r

σ  is a reference collision cross section.  

Scaled variables are denoted by a hat, and the scaled macroscopic variables become: 
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 ˆ
ˆn̂ dVη

η

ϕ= ∫  2.1.4a 

 ˆ

1
ˆ ˆˆ

ˆ
i i

u dV
n

η

η

η ϕ= ∫  2.1.4b 

 ( )
2

ˆ

2ˆ ˆ ˆˆ
ˆ3

i i
T u dV

n
η

η

η ϕ= −∫  2.1.4c 

 ( )
2

ˆ

1 1 ˆˆ ˆˆ ˆ ˆ
3 2

i i
p u dV nTη

η

η ϕ= − =∫  2.1.4d 

 ( )( )ˆ ˆ ˆˆ ˆ ˆ ˆ2
ij i i j j ij

u u dV pη

η

τ η η ϕ δ= − − − +∫  2.1.4e 

 ( )( )
2

ˆ

1
ˆ ˆ ˆˆ ˆ ˆ

2
j j j i i

q u u dVη

η

η η ϕ= − −∫  2.1.4f 

It is less obvious how to scale the entropy.  For this work, the entropy is scaled by the 

species gas constant 
s

R : 

 
1

ˆ ˆˆ ln
ˆ

s B dV
n

η

η

ϕ ϕ= − ∫ , 2.1.4g 

where B is an additive constant that cancels out when entropy differences are computed. 

When applied to a discrete set of points in velocity space, the distribution function 

is viewed as a set of delta functions located at each grid point.  Instead of having a 

continuum of velocities, the velocity space is quantized by the grid spacing βV, defined 

with respect to non-dimensional variables.  A Riemann sum integration routine is used to 

obtain the macroscopic properties and moments of the distribution.   All of the mass in a 

volume surrounding a given velocity grid point is represented by a delta function located 

at that grid point, figure 2.1.1.  This formulation differs from a histogram view of the 

distribution function.  In a histogram view of the distribution, instead of the mass around 

a grid point being concentrated at a single point, it is distributed over a finite width bar.  
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Since the bar has a finite width, a single bar has a non-zero temperature whereas a single 

delta function has no corresponding temperature. 

 

Figure 2.1.1.  On the left side, a planar slice of a continuous velocity distribution is 
plotted.  The right hand side is the delta function approximation to the 
continuous velocity distribution function. 

Section 2:  The Boltzmann Equation 

The Boltzmann equation describes the time evolution of the velocity distribution 

function 

 ( ) ( ) ( ) ( )2 ' 'ˆ
i i i i i

i

n g d dV
t x

η

η

ϕ ϕ σ
η ϕ η ϕ ζ ϕ η ϕ ζ

Ω

∂ ∂ ∂ + = − Ω ∂ ∂ ∂Ω∫ ∫ . 2.2.1  

The effects of body forces have been neglected in the equation above. When scaled, the 

Boltzmann equation can be rewritten as: 

 ( ) ( ) ( ) ( )' '

ˆ

ˆ ˆ ˆ1 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆˆ ˆ

i i i i i

i

g d dV
t x Kn

η

η

ϕ ϕ σ
η ϕ η ϕ ζ ϕ η ϕ ζ

Ω

∂ ∂ ∂ + = − Ω
 ∂ ∂ ∂Ω∫ ∫  2.2.2 

The Knudsen number, Kn, is the ratio between the mean free path and a characteristic 

length scale of the problem and is used to quantify the rarefaction of a flow.  The left 

hand side of this equation represents the time rate of change of the number of molecules 

in a given point in velocity space by convection through the surfaces of the spatial 

element.  The right hand side of the equation represents the changes in velocity space as a 
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result of collisions.  The primed values indicate post-collision velocities and σ∂ ∂Ω  is 

the differential cross section.  The collision integral is nonlinear and can be decomposed 

into depleting and replenishing collisions.  It is convenient to separate the collision 

integral into depleting collisions and replenishing collisions because the proposed method 

pairs depleting collisions with their corresponding replenishing collisions to ensure 

conservation of mass, momentum, and energy. 

 ˆ ˆ ˆ
coll repl depl

I I I= −  2.2.3a 

 ˆ

ˆ ˆ

ˆˆˆ ˆˆ ˆ ˆ ˆ( ) ( )   
ˆdepl i i

I g d dV
ζ

ζ

σ
ϕ ζ ϕ η

Ω

∂ = Ω  ∂Ω∫ ∫  2.2.3b  

 ˆ

ˆ ˆ

ˆˆˆ ˆˆ ˆ ˆ ˆ( ) ( )   
ˆrepl i i

I g d dV
ζ

ζ

σ
ϕ ζ ϕ η

Ω

∂ ′ ′= Ω  ∂Ω∫ ∫  2.2.3c  

Depleting collisions reduce the number of molecules within a certain velocity class and 

replenishing collisions add molecules to that velocity class. The post-collision velocities 

ˆ
i

ζ ′ and 
î

η ′  that appear in the replenishing integral are not independent variables but are 

determined from ˆ
i

ζ and 
î

η from the dynamics of an elastic collision. 

The differential cross section describes the collision scattering and intermolecular 

potential between molecules.  For many engineering applications the differential cross 

section is assumed to be isotropic, so integration over all scattering angles yields the total 

cross section, σT.  There are numerous models that are used to describe the total cross 

section, such as Lennard-Jones [23], hard sphere models, variable hard spheres 

(VHS)[24], and variable soft spheres (VSS) [25].  In the present numerical scheme, a 

VHS model is used.  The cross section in a VHS model, written in scaled variables, is 

given by ˆ ˆ
T

g κσ −=  where κ is typically fractional.  The cross section is scaled by a 

reference cross section and the relative speed is scaled by ηr.  When 0κ =  the collision 

cross section reduces to a hard sphere model.  When 1κ =  the total cross section 
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corresponds to pseudo-Maxwell molecules.  Pseudo-Maxwell molecules are not identical 

to “real” Maxwell molecules because the scattering for “real” Maxwell molecules is not 

isotropic whereas in the VHS model the scattering is isotropic.  If pseudo-Maxwell 

molecules are used, the Boltzmann equation for a homogeneous isotropic gas, simplifies 

to: 

 
ˆ 1

ˆ ˆ ˆ
ˆ repl depl

t
t Kn

ϕ
ϕ ϕ

∂
 ∆ = ∆ − ∆ ∂

 2.2.4a 

 ( ) ( ) ( ) ( )
ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

i i

depl i i T i i i i
t g d t d

ζ ζ

ϕ ϕ ζ ϕ η σ ζ ϕ η ϕ ζ ζ∆ = ∆ = ∆∫ ∫  2.2.4b 

 ( ) ( )
ˆ

ˆ ˆˆˆ ˆ ˆ ˆ

i

repl i i i
t d

ζ

ϕ ϕ ζ ϕ η ζ′ ′∆ = ∆ ∫  2.2.4c 

Equation 2.2.4b can be used to calculate the incremental depletion at grid point 
î

η  as a 

result of depleting collisions.  Equation 2.2.4c represents the incremental gain at grid 

point 
î

η  as a result of replenishing collisions.  The incremental depletion is a function of 

the pre-collision velocities 
î

η  and ˆ
i

ζ and can therefore be evaluated directly.  The 

incremental replenishment is not as easily computed because the post collision velocities 

depend upon the nature of the collision.  For elastic collisions mass, momentum, and 

translational energy are conserved.  For momentum to be conserved during a collision, 

the center of mass velocity remains constant.  To satisfy energy conservation and 

momentum conservation, the magnitude of the relative velocity vector must also remain 

constant.  For isotropic scattering, the direction of the post-collision relative velocity 

vector is distributed uniformly on the unit sphere centered about the center of mass 

velocity. 

Section 3:  1D Shock Wave Theory 

In this section, I discuss the theory behind traveling shock waves.  A normal 

shock wave transitions a supersonic gas upstream of the wave to a subsonic flow 
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downstream of the shock wave.  In continuum dynamics a shock is generally regarded as 

an abrupt change in macroscopic properties and the ratios between the upstream and 

downstream properties are described by the Rankine-Hugoniot conditions.  In scaled 

variables, the Rankine-Hugoniot equations are: 

 
( )

( )

2

12

2

1 1

1ˆ

ˆ 1 2

M

k M

γρ

ρ

+
=

− +
 2.3.1a 

 ( )
( )

( )

2

122
1 2 2

1 1

ˆ 2 1
2 1

ˆ 1

MT
M

T M

γ γ
γ

γ

− −
 = + − 

+
 2.3.1b 

 
( )

( )22
1

1

ˆ 1
2 1

ˆ 1

p
M

p
γ γ

γ
 = − − +

 2.3.1c 

For the traveling shock analyzed in Chapter 4.3, 1
ˆ 0u < and the gas downstream of the 

shock is at rest with respect to the lab reference frame.  The shock speed, ˆ
s

u , with respect 

to the lab reference frame can be computed from continuum dynamics by solving the 

following quadratic equation: 

 ( )2 2

1 1

3 1
ˆ ˆ ˆ ˆ1 0

2 2
s s

u u u u
γ

γ γ
−

 − − + − =  , 2.3.2 

where 1û is the velocity of the unshocked gas.  The upstream flow velocity relative to the 

shock is ( )1
ˆ ˆ

s
u u−  and the corresponding shock Mach number is ( )1

ˆ ˆ 2
s

u u γ− . 

In reality shocks have a finite thickness and the macroscopic properties inside of 

the shock wave depend on the nature of the molecular interactions.  The thickness of a 

shock wave is commonly defined as the distance required to span the density change by 

the maximum density gradient.  The thickness of the shock wave depends on how quickly 

the gas equilibrates.  Shock waves generated with a hard sphere molecular model are 

thinner than shock waves composed of pseudo-Maxwell molecules.  Commonly the 

shock thickness is expressed as a multiple of the upstream mean free path.  The most 

general definition of the mean free path is given by: 



 14 

 
'c

n g
λ

σ

< >
=

< >
 2.3.4 

The bracketed quantities are averaged and c′ is the mean thermal speed of the gas.  For 

hard sphere molecules the upstream mean free path is easily defined as: 

 
1

2
upstream

n
λ

σ
=  2.3.5 

In [26, 27] Bird defines the mean free path for a variable hard sphere gas by: 

 
( ) ( )2 2 2

ref

upstream

ref

T
T

n

ω

ω
λ

ω ω σ

 
 
 =

− Γ −
 2.3.6 

The parameter ω describes the variation of the collision cross section to the 

relative translational energy 

 
2

2ref

ref

g

c

ω

σ σ

−
 

=   
 

, 2.3.7 

and Bird defines a reference thermal speed via 

 2 *2(2 )
ref b r

c k T mω= − . 2.3.8 

Here m
*
 is the reduced mass in a binary collision, ( * 2m m=  for a single species gas), 

and cref is the mean relative speed of colliding VHS molecules in an equilibrium gas at Tr 

(not the relative speed of molecules chosen at random). For hard sphere molecules, ω is 0 

and for pseudo-Maxwell molecules ω is 0.5. 
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CHAPTER 3: METHOD 

The method of solving the Boltzmann equation for a discrete velocity gas is 

described in this chapter.   

Section 1: Creating the Physical and Velocity Domains 

First, the physical space is divided into cells and corresponding velocity 

distributions are initialized for each physical cell.  The cell size for rarefied flows should 

be of the same order as the mean free path.  Although any non-equilibrium distribution 

can be initialized, typically an equilibrium distribution with a prescribed density, 

temperature, and velocity is used.  To initialize the velocity distribution function, a 

continuous Maxwellian computed from a given temperature and density is evaluated at 

the set of discrete points in velocity space.  The Maxwellian distribution for a 3-D gas is: 

 ( ) ( )

3
2

2
: , , exp

2 2

eq

i i i i

b b

m m
n u T n u

k T k T
ϕ η η

π

   
= − −   

   
 3.1.1 

When scaled by the reference velocity, eq2.1.3, upstream number density and the 

temperature, the scaled equilibrium distribution becomes: 

 ( ) ( )
3

2
21 1ˆˆ ˆ ˆˆ ˆ ˆ ˆ: , , exp

ˆ ˆ
eq

i i i i
n u T n u

T T
ϕ η η

π

   
= − −      

 3.1.2 

The equilibrium distribution is defined as the distribution where all moments of 

the distribution are invariant under collisions.  When the continuous distribution is 

projected onto the discrete set of points, the resulting discrete distribution is not 

necessarily in equilibrium.  The slight non-equilibrium can contaminate a solution.  

Consequently, before the distribution function is allowed to convect it is first relaxed to 

local equilibrium by collisions. 
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Since the collision integral is computationally expensive, a rather coarse discrete 

representation must be used.  When creating a velocity grid, both the range and the 

resolution of the grid are important.  A normally infinite velocity space is truncated 

where the contribution to the first several moments of the distribution function become 

vanishingly small.  The third moment, the heat flux, is the highest physical moment and 

the velocity distribution is truncated where the contributions to this moment goes to zero.  

The resolution of the grid can affect several different routines.  The numerical error 

resulting from integration increases as the grid is coarsened.  Although a continuous 

Maxwellian has a specified temperature, velocity and density, the computed density, 

velocity, and temperature from the corresponding discrete distribution will have errors 

associated with the numerical integration.  Having a coarse resolution also restricts the 

potential velocities that the gas can have.  Since a real gas has a continuum of velocities, 

a limited set of discrete velocities can restrict the accuracy of the computations.   Typical 

values used for the scaled velocity spacing, β̂ , range from 0.5 to 0.7 and the velocity 

domain typically ranges over 1 2ˆ2.5
r
Tη± .  The velocity domain needs to be expanded as 

the gas temperature and velocity increase. 

NUMERICAL INTEGRATION: 

In this scheme, the discrete distribution is represented by a set of delta functions, 

figure 3.1.1, located at each grid point.  All of the mass around a grid point in velocity 

space is concentrated at that grid point.  In this representation, the macroscopic properties 

are: 

 
3ˆˆˆ

IJK V

IJK

n ϕ β=∑  3.1.3a 

 
31 ˆˆ ˆ ˆ

ˆ IJKi i IJK V

IJK

u
n

η ϕ β= ∑  3.1.3b 
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 ( )
2

32 ˆˆ ˆˆ ˆ
ˆ3 IJKi i IJK V

IJK

T u
n

η ϕ β= −∑  3.1.3c 

 
1 ˆˆ ˆ
2

p nT=  3.1.3d 

 ( )( ) 3ˆ ˆˆ ˆ ˆˆ ˆ2
IJK IJKij i i j j IJK V ij

IJK

u u pτ η η ϕ β δ= − − − +∑  3.1.3e 

 ( )( )
2

31 ˆ ˆˆ ˆ ˆˆ
2 IJK IJKj j j i i IJK V

IJK

q u uη η ϕ β= − −∑  3.1.3f 

 ( ) 31 ˆˆ ˆˆ ln
ˆ

IJK IJK V

IJK

s
n

ϕ ϕ β= − ∑  3.1.3g 

The scaled velocity spacing parameter is
V

β and I, J, and K are integer indices that denote 

position on the velocity grid. 
 

 

Figure 3.1.1. A discrete velocity distribution function represented by a set of delta 
functions. 

Once a suitable discrete representation of the velocity distribution function is 

created, the Boltzmann equation can be solved by performing collision steps followed by 

convective steps. 
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TIME SPLITTING METHOD 

To solve the Boltzmann equation, the collision integral and the convective terms 

are solved separately. 

 
ˆ

ˆˆ ˆ ˆ
ˆ collision convection

t
t

ϕ
ϕ ϕ ϕ

∂
∆ ≡ ∆ = ∆ + ∆

∂
 3.1.4 

 
ˆ

ˆˆ ˆ
ˆ

convection i

i

t
x

ϕ
ϕ η

∂
∆ = − ∆

∂
 3.1.5 

 ˆ ˆˆ
collision coll

I tϕ∆ = ∆  3.1.6 

Section 2: Collisions 

The collision integral can be decomposed into depleting and replenishing 

collisions.  Replenishing collisions add molecules to a certain velocity class and depleting 

collisions remove mass from a certain velocity class.  The depleting collision rate at 

velocity point 
î

η  is obtained by integrating equation 3.2.1b over all possible scattering 

angles and all collision partner velocities.  The replenishing collision rate at 
î

η can be 

obtained by integrating equation 3.2.1c over all collisions that produce velocities 
î

η .   

 ˆ ˆ ˆ
coll repl depl

I I I= − , 3.2.1a 

 ˆ

ˆ ˆ

ˆˆ ˆˆ ˆ ˆ
ˆdepl

I g d dVζ η ζ

ζ

σ
ϕ ϕ

Ω

∂
 = Ω  ∂Ω∫ ∫ , 3.2.1b  

 ˆ ˆ ˆ

ˆ ˆ

ˆˆ ˆˆ ˆ ˆ
ˆii

repl
I g d dVηζ ζ

ζ

σ
ϕ ϕ ′′

Ω

∂ = Ω
  ∂Ω∫ ∫ . 3.2.1c 

One way to solve the collision integral such that mass, momentum, and energy are 

conserved is to pair replenishing collisions with their corresponding direct depleting 

collisions.  
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DEPLETING COLLISIONS 

For isotropic scattering the angular dependence can be integrated immediately and 

the incremental depletion at a given point 
î

η  is given by 

 ( ) ( )ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ

i

depl i i T i
t g d

ζ

ϕ ϕ ζ ϕ η σ ζ∆ = ∆ ∫ . 3.2.2 

If pseudo-Maxwell molecules are used, ˆ ˆ 1
T

gσ = , and equation 3.2.2 simplifies to 

 ( )ˆˆ ˆ ˆ ˆ
depl i

t nϕ ϕ η∆ = ∆  3.2.3 

In previous work, the collision integral was evaluated by considering collisions 

between each point 
î

η and all other points ˆ
j

ζ .  This method is 2( )
V

O N , where for each 

collision between point 
î

η  and ˆ
j

ζ  the corresponding incremental depletion is: 

 ( ) ( ) ( )
1 ˆˆˆ ˆ ˆ ˆ
2

depl i i i
tϕ ζ ϕ ζ ϕ η∆ = ∆ , 3.2.4a 

 ( ) ( ) ( )
1 ˆˆˆ ˆ ˆ ˆ
2

depl i i i
tϕ η ϕ ζ ϕ η∆ = ∆ . 3.2.4b 

By integrating over all possible collisions between 
î

η  and ˆ
j

ζ , the depleting 

integral is evaluated exactly within the discretization error.  The factor of one half is to 

prevent double counting.  Although this results in correct evaluation of the depleting 

integral, it is computationally expensive and of order 2

V
N , where

V
N  is the number of 

points in velocity space. Throughout the remainder of this report, this method of 

evaluating the collision integral will be referred to as the 2N  method.  To reduce the 

computational effort associated with the 2N method, the depleting integral is evaluated 

statistically by considering collisions between each point 
î

η  and a set of randomly chosen 

collision partners, 
j

M , figure 3.2.1.  To do this, the incremental depletion at 
î

η  is 

analytically computed from equation 3.2.3.  Next a set of random collision partners, 
j

M  

is chosen by a selection algorithm as described below. 
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Figure 3.2.1.  A set of random collision partners 
j

M is chosen to collide with 
i

η .  The 

selection of collision partners biases those that contribute more to the 
collision integral. 

PICKING COLLISION PARTNERS 

Many points in velocity space contain trace amounts of mass, especially near the 

fringes of the domain and consequently they contribute little to the collision integral.  The 

goal of the proposed selection algorithm is to efficiently select collision partners that 

contribute more to the collision integral.  A simple way to do this is to use an acceptance 

rejection algorithm that biases collision partners that contribute more to the collision 

integral.  For Maxwell molecules, the contribution to the depleting collision integral is 

directly proportional to the value of the distribution function.  In traditional acceptance-

rejection schemes two random numbers are drawn.  First a random point in velocity space 

is selected.  To select a point in velocity space one can generate three random numbers 

corresponding to the three directions of velocity, but it is computationally expensive to 

call three random numbers.  Alternatively, it is possible to select a random point by 

calling one random number.  A random number, l, is defined as an integer between 0 and 

Nv-1.  The index l can be mapped to indices I, J, and K by the following equations: 

 min( , )
k

K MOD l R k= +  3.2.5a 
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 minint , j

k

l
J MOD R j

R

 
= + 

 
 3.2.5b 

 min

int

int k

j

l

R
I i

R

 
 
 = +
 
  

 3.2.5c 

The ranges 
k

R  and 
j

R  are given by: 

 max min 1
k

R k k= − + , 3.2.5d 

 max min 1
j

R j j= − + , 3.2.5e 

Where, e.g. mink and maxk correspond to the minimum and maximum integer indices for 

the parameter K.  These mapping equations allow for a single random number call to 

select a point in 3-D velocity space defined by (I, J, K).  A second random number is 

generated after the first random point is selected.  If the local value of the distribution 

function is larger than the second random number, that point is accepted.  If it is not 

accepted, a new set of random numbers is drawn.  This scheme can be computationally 

intensive because of the costs associated with generating random numbers.   

Alternatively, the process of selecting random collision partners can be made 

more efficient by creating a cumulative distribution function Ψ . 

 ( ) ˆ
s

IJK

l

s ϕΨ =∑  3.2.6 

The function ( )sΨ  increases monotonically from 0s =  to ( )1
V

s N= − .  A 

random number R between 0 and ( )sΨ is drawn.  A binary search is then used to find the 

value l such that R lies between ( )lΨ and ( 1)lΨ + .   Since the increment between 

( 1)lΨ + and ( )lΨ is 
l

ϕ , points in velocity space with more mass are more likely to be 

chosen than points with little mass, figure 3.2.2.   



 22 

 

Figure 3.2.2.  A sample plot of the cumulative distribution function Ψ.  Large steps 
correspond to large values of φ and smaller steps correspond to smaller 
values of φ. 

The cumulative scheme avoids having to reject randomly sampled points, based on 

another random number call, and thus reduces the number of random number calls in two 

ways. However, as noted above, a search is required.  Collision partners can be selected 

more than once and partners are selected continuously until the set of random collision 

partners has a mass fraction larger than a cutoff mass fraction.  The cutoff fraction is 

referred to as the depleting fraction, DF.   

For a test velocity 
î

η colliding with a set of field velocities, Mj, the amount 

depleted, Eq. 3.2.7a, is evenly distributed among all collision pairs.  For further 

information, refer to Appendix A. 

 ( ) ( )( ) ( )( )31 ˆˆ ˆ ˆ ˆ ˆˆ ˆ2 sgn
2

neg
d t n nϕ η ϕ η β ϕ ζ≡ ∆ − −  3.2.7a 

REPLENISHING COLLISIONS 

The inverse replenishing collisions are computed along with the corresponding 

direct depleting collisions.  For elastic collisions mass, momentum, and energy are 
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conserved and in a discrete velocity framework, all possible collision outcomes lie on the 

sphere of diameter g centered about the center of mass velocity, figure 3.2.3. 

 

Figure 3.2.3.  Collision circle drawn in 2D.  Elastic collisions between η  and ζ  result in 

post collision velocities that lie on the black circle.  The blue lines represent 
the pre-collision velocities and the green and red lines are post-collision 
velocities. 

In the two-dimensional figure 3.2.3 the depleting collisions are performed at 

η and ζ corresponding to the blue vectors.  To find the post collision velocities, the 

relative velocity vector g is arbitrarily rotated about the center of mass velocity.  These 

replenishing velocities correspond to the red and green vectors.  In principle the 

replenishing integral is evaluated by considering all possible post-collision velocities. 

The integral is approximated by sampling several replenishing pairs.  The total amount 

replenished equals the amount depleted for each collision, ensuring mass, momentum, 

and energy conservation.  The replenishment is then shared equally among all post-

collision velocities.  In a discrete representation, the only permissible velocities are those 

that lie precisely on the velocity grid.  Figure 3.2.3 shows that this restriction can limit 

the number of post collision velocities.  In general, as the relative velocity vector 

becomes smaller, the number of potential post-collision velocities that lie on the grid 
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decreases [28].  For collisions between molecules with very small relative velocities, 

there may be no post-collision velocities that lie on the grid.  In figure 3.2.3, this null type 

of collision is represented by the red circle.  The reduction of possible collision outcomes 

can artificially restrict the approach to equilibrium.  Consequently, we present an 

approach wherein the  post-collision velocities that lie off the grid (e.g. g′′ in Fig. 3.2.3) 

are projected onto the discrete grid so that mass, momentum, and energy are conserved 

[12]. 

INTERPOLATION SCHEME 

While projecting mass changes, ∆φ, that lie off the grid back onto the grid, the 5 

conservation equations must be satisfied.  First, a stencil in which the contribution ∆φ is 

mapped to needs to be defined.  The origin of the stencil, the green point in figure 3.5, is 

taken as the velocity lattice point closest to the mass increment to be interpolated.  That 

mass increment is located at coordinates a,b, and c.  The origin and three other points that 

lie on the cube surrounding the interpolating point make up the ‘interior points’.  These 

points are denoted by the blue and green dots in figure 3.2.4. 

 

Figure 3.2.4.  A 7-point symmetric stencil when the point to be interpolated lies within 
the cubic velocity domain. 
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Although it would appear logical to use a 5
th
 point located on the cube 

surrounding the interpolating point, e.g. point xyz, the resulting matrix describing mass, 

momentum, and energy conservation is singular.  However, it is possible to obtain a 

unique interpolation onto the grid by using 4 ‘internal’ points that lie on the cube 

surrounding the mass increment (three blue and one green) and a 5
th

 ‘external’ point that 

is outside of the box.  One ‘external’ point ex, ey, or ez would suffice, but to preserve 

symmetry, three external points are used and the interpolation is shared evenly to all three 

‘external’ points.  The conservation equations for such a symmetric 7-point stencil with 

three ‘external’ points are: 

 

2 2 2

1 1 1 1 3 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

0 1 1 1 3

o

ix

iy

iz

ext

fmass

fx mom a

fy mom b

fz mom c

fenergy a b c

    
    

− −     
    =− −
    

− −     
     + +    

 3.2.8 

The parameters a, b, and c are the components of the relative velocity vector from 

the stencil origin at o to the point to be interpolated.  The values fo, fix, fiy, fiz, and fext are 

the fractional amounts of mass that are interpolated to each corresponding point.  This 

matrix is invertible, and the corresponding interpolation equations for a symmetric 7-

point stencil are: 

 

( )
( )

( )

( )

2 2 2

2 2 2

1 0

6 0

o

ext

ix ext

iy ext

iz ext

f a b c

f a b c a b c

f a f

f b f

f c f

= − − − ≥

= − + + − − − ≤

= +

= +

= +

 3.2.9 

For the stencil shown above, the interpolation equations always result in negative 

changes at the external points of the stencil.  The negative mass change is necessary to 
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satisfy the energy constraint because the only way to cancel the relative kinetic energy 

introduced by distributing the mass to different velocities is to introduce a decrease in 

mass somewhere. 

The interpolation equations (eq 3.2.9) were derived for the common case where 

the point to be interpolated lies within the velocity space domain.  Occasionally collisions 

yield velocities that are outside the domain, as is the case in figure 3.2.5. 

 

Figure 3.2.5.  A collision that results in a post collision velocity that lies outside of the 
domain. 

 Using a similar procedure, it is also possible to map these points to the nearest 

stencil on the grid.  To construct the stencil, the nearest point in velocity space that is not 

a corner of the cubic velocity domain is selected as the stencil origin.  A corner of the 

velocity domain is not an acceptable stencil origin because it only has three points as 

neighbors and a 5 point stencil is required at a minimum.  The internal points are then 

selected as the next three nearest points that form the cube that is closest to the point to be 

interpolated.  Only one or two ‘exterior’ points are used if the stencil origin is on an edge 

of the velocity domain or a face boundary of the domain.  For example, in figure 3.2.6, 

the origin corresponds to a point that is on the edge of the velocity domain and only one 

exterior point is used.  
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Figure 3.2.6.  A 5-point stencil (o, ix, iy, iz, ez) where the point to be interpolated lies 
outside of the velocity domain and is mapped back into the defined velocity 
space.  The line connecting points iz and ez represent an edge of the velocity 
domain. 

The corresponding matrix describing mass, momentum, and energy conservation 

is: 

 

2 2 2

1 1 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1
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     + +    

 3.2.10 

Similar to the previous stencil, a, b, and c are the components of the relative 

velocity vector from the stencil origin to the interpolating point.  In figure 3.6, a is a 

negative number and b and c are positive numbers.  For the stencil above, the 

interpolation equations are: 

 

( )

2 2 2

2 2 2

1

2

o

ez

ix

iy

iz ez

f a b c

f a b c a b c

f a

f b
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= +

 3.2.11 
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 When interpolating post-collision mass increments that extend off the grid back 

onto the grid, a penalty is paid by the creation of larger negative changes of mass.  Since 

the point to be interpolated does not lie within the cube defined by the ‘interior’ points 

and origin, the negative changes of mass can occur at the external points or interior 

points.  In particular, one can map any point to the above 5-point stencil and conserve 

mass, momentum, and energy regardless of the orientation of the interpolating point 

relative to the stencil origin.  As the distance from the interpolating point to the stencil 

origin increases, however, more negative mass must be created to satisfy the conservation 

equations.  Therefore, for the case where an interpolating point is far from an origin, i.e. 

for points well outside of the domain, appreciable negative changes in mass must be 

created.  In general this is not a serious problem because collisions that result in velocities 

that lie outside of the grid boundaries are infrequent and the fractional masses that are 

moved back onto the grid are very small, of the order 10
–6

.   

After the replenishing velocities are mapped back onto the grid, collisions 

between 
i

η and the remainder of the random collision partner set
j

M  are considered.  The 

process is then repeated for all 
i

η  points in velocity space. 

NEGATIVE MASS 

Occasionally, portions of the distribution function can become negative if the 

interpolation or collision cause more mass to be depleted from a point than that point has 

available.  In general, this negative mass is carried along with the solution even though 

negative mass is unphysical.  Typically the magnitudes of the negative values are very 

small, O(10
–4

).  The only apparent problem with this is that the negative values make it 

difficult to evaluate the entropy because the entropy depends on ln(φ), cf. equation 3.1.3g, 

which is undefined for φ < 0.  There are four different options to evaluate the entropy.  

The first method is to assume that the negative values are negligible and not include their 
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contributions to the overall entropy.  It is easily shown that ( )
0

lim ln 0
ϕ

ϕ ϕ
→

= .  This method 

generally results in over-predicting the entropy.  Another way is to modify the definition 

of entropy such that: 

 ( ) 31 ˆˆ ˆˆ ln
ˆ

IJK IJK V

IJK

s
n

ϕ ϕ β= − ∑  3.2.12 

When all points in velocity space are positive, this definition of entropy is equivalent to 

equation 3.1.3g and the entropy is predicted correctly.  A third way to evaluate the 

entropy is to remove the negative mass by a “sweeping” algorithm.  Removing the 

negative values of the distribution is only performed to compute the entropy, and does 

not actually change the distribution function.  Sweeping is done by first calculating the 

pre-sweep momentum components, density, and temperature of the distribution.  All of 

the negative values of ϕ̂  are then set to zero and the distribution function is then rescaled 

to correct the mass back to its unswept state.  The swept distribution function will have a 

slight error in the temperature and momentum, so additional corrections are imposed to 

conserve momentum and energy.  These corrections are applied to a 27 point stencil 

centered about the origin in velocity space.  The origin is the zero velocity point in 

velocity space.  Momentum in the 1̂η  direction is conserved by: 

 

1 3

1 3

ˆ1
ˆ ˆ ˆ(1,0,0) (1,0,0)

2

ˆ1
ˆ ˆ ˆ( 1,0,0) ( 1,0,0)

2

err

corr

V

err

corr

V

n
u

n
u

ϕ ϕ
β

ϕ ϕ
β

= −

− = − +

 3.2.13a 

where, 

 1
ˆ ˆ ˆerr

swept pre swept
u u u −= −  3.2.13b 

and similarly for the other two directions. To correct the energy, the error is first 

computed as: 
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 ( ) 3

ˆ3ˆ ˆ ˆ
2

err swept pre swept

V

n
T T T

β
−= −  3.2.14 

At the origin, a small amount of mass is added: 

 
2

13 ˆˆ
27

origin err
Tϕ

β
∆ =  3.2.15a 

At the other 26 points that surround the origin, a corresponding small amount of mass is 

subtracted. 

 
1

ˆ ˆ
26

ij origin
ϕ ϕ∆ = − ∆  3.2.15b 

Each of the previous three schemes are rather ad-hoc, where instead of evaluating 

the entropy of the distribution directly we perturb the distribution to remove the negative 

mass.  Since in general only the change in entropy is important, the entropy can be 

alternatively computed by the Gibbs equation: 

 2 1 2 2

1 1

ˆ ˆ
ˆ ln ln

ˆ ˆ1

s s T P
s

R T P

γ

γ

   −
∆ = = −   

−    
 3.2.16 

Using Gibb’s equation does not work for non-equilibrium distributions, so it is not 

helpful in general.  However, the above equation can be used to obtain the correct jump 

conditions across a shock wave.   

Section 3: Convection 

In the time-splitting approach the change in the distribution function due to 

convection is computed after the collision step.  The boundary conditions are applied 

during the convective step.  The physical space is divided into a set of square cells and 

the velocity distribution function in each physical cell defines the local motion of the 

molecules.  In this work a first order time explicit upwind scheme is used for the 
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convective step.  Using an explicit expansion of the time derivative, the collision-less 

Boltzmann equation becomes: 

 
( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , ,

ˆ 0
ˆ ˆ

ii i i

i

i

x t t x t x t

t x

ηϕ η ϕ η ϕ η
η

+ ∆ − ∂
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∆ ∂
 3.3.1 

An upwind scheme that depends on the direction of the velocity is used for the 

spatial derivative: 
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 3.3.2 

 

When substituted into equation 3.3.1, the updated distribution function is: 
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 3.3.3 

In order to be stable, the following CFL condition must be satisfied.  

 
max

ˆ
ˆ 1

ˆ
i

t

x
η

∆
<

∆
 3.3.4 

For the non-equilibirum flow problems of interest, the physical space step should be less 

than the mean free path.  For a Mach 1.97 shock in an example in the next chapter, the 

velocity space is truncated at 
max

ˆ 3.5η = .  Under these conditions, the time step for the 

convective term must be relatively small, less than 0.1.  For higher Mach number flows, 

the maximum velocity increases and consequently the time step must be even smaller.  

Although not implemented in this work, it may be beneficial to use fractional substeps for 

the convective and collision routines.  The convective step can be computed very quickly 

relative to the collision step, but the time step is limited only in the convective routine 
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and not in the collision routine.  It may be beneficial to use a larger time step for 

collisions and a smaller time step for convection. 

BOUNDARY CONDITIONS 

 For the 1D unsteady shock problem an equilibrium distribution moving to the left 

at a prescribed mean velocity is initialized for all physical cells.  A specular boundary is 

imposed on the distribution function, φ
L
, at the left boundary and the right boundary, φ

R
, 

is set to have a zero gradient.  To impose the specular boundary condition, the part of the 

distribution that convects to the left is mirrored to the right side. 

 ( ) ( )1 2 3 1 2 3 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , 0L Lϕ η η η ϕ η η η η= − >  3.3.5 

By doing this, the molecules that are moving into the wall strike the wall and the 

normal component of velocity changes sign.  The specular wall boundary condition also 

satisfies energy conservation.  To impose the zero gradient boundary condition on the 

right side of the physical domain, the distribution function in the right-most cell is copied 

from the adjacent cell to the left. 
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CHAPTER 4: NUMERICAL RESULTS 

Section 1: Spatially Homogeneous Relaxation 

The major challenge to solving the Boltzmann equation involves evaluation of the 

non-linear collision integral.  To isolate the collision scheme, homogeneous relaxation 

test cases were first implemented.  The two distribution functions analyzed are the 

Bobylev-Krook-Wu (BKW) distribution and the Maxwellian distribution.  Since the 

collision scheme is conservative, mass, momentum, and temperature should not change 

as the distribution relaxes.  The BKW distribution starts as a non-equilibrium distribution 

that relaxes to a Maxwellian.  There are two sources of error: (1) the discretization error – 

how many points in velocity space are used to approximate the distribution function, and 

(2) statistical or other errors from evaluating the collision integral stochastically.  The 

errors associated with both sources are analyzed. A low depleting fraction and a coarse 

grid are desirable for efficient computation. 

Varying Depleting Fraction and Replenishing Pairs 

In this scheme it is possible to vary how accurately the depleting and replenishing 

integrals are evaluated by adjusting the depleting fraction and number of replenishing 

pairs.  The depleting fraction is the mass fraction of the set of randomly chosen collision 

partners.  The number of replenishing pairs represents how many post-collision velocity 

pairs are sampled, e.g. how many rotations of the relative velocity vector are performed.  

An 11
3
 grid with a scaled velocity spacing of 0.5 and time step of 0.2 are used in the 

following test cases. 

The relaxation of the Bobylev-Krook-Wu distribution using different depleting 

fractions is studied and these results are compared to the N
2
 method.  The N

2
 method is a 
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computationally expensive scheme that considers all possible collision partners.   In 

previous work, [12], it was found that 2 replenishing pairs are sufficient for a smooth 

solution, but 10 pairs are used to ensure that this solution approximates the exact solution 

very well.  This solution (O(N
2
) with 10 replenishing pairs) is referred to as the “Gold 

Standard” (GS) for BKW relaxation.  Analytic results can be obtained by projecting a 

continuous distribution function onto a discrete grid, but these results are not used 

because a continuous distribution function relaxes slightly differently than a discrete 

distribution function, with the discrete relaxation tending to the analytic result as the 

discretization becomes very fine. 

Although the GS solution uses 10 replenishing pairs, the other simulations use 4 

replenishing pairs.  Figure 4.1.1 shows slices of the distribution function plotted at 

different times for a depleting fraction of 80%.  A cubic spline is passed through the 

discrete data to guide the eye. 

 

Figure 4.1.1 Instantaneous realizations of the Bobylev-Krook Wu distribution with a 
depleting fraction of 80% at three different times.  For comparison are the 
corresponding GS solutions. 
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With this depleting fraction, an average of 175 collision partners are sampled per point in 

velocity space.  This shows that with such a large depleting fraction, the numerical 

solution approximates the GS solution very closely. 

Figure 4.1.2 shows that slices of the distribution still closely agree with the GS 

solution when the depleting fraction is reduced to 40%.   An average of 70 collision 

partners are sampled per point in velocity space with this depleting fraction. 

 

Figure 4.1.2.  Instantaneous realizations of the BKW distribution with a depleting 
fraction of 40% at three different times. 

When the depleting fraction is further decreased to 5% the noise increases 

significantly as shown in figure 4.1.3.  This occurs because at lower depleting fractions 

larger amounts of mass are distributed among fewer points.  An average of 7 collision 

partners are sampled per point in velocity space.  Despite the increased noise for the 5% 

case, the computational time associated with this method is nearly two orders of 

magnitude smaller than the N
2
 method.  To reduce the noise, the 5% run was ensemble 

averaged and the resulting smooth distributions are compared to the GS results.  By 
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ensemble averaging solutions generated with a 5% depleting fraction, the N
2
 results can 

nearly be recovered.  

 

Figure 4.1.3.  Un-averaged instantaneous realizations of the BKW distribution with a 
depleting fraction of 5% at three different times.  

The macroscopic variables of interest are obtained by integrating different 

moments of the distribution function.  The integration tends to smooth the macroscopic 

variables so even though the distribution function might be noisy, the variables of interest 

may be smooth.  To assess the noise, the RMS difference between the computed 

distribution and the GS solution are plotted in 4.1.4.  The RMS is defined as: 

 ( )
2

GS Computed

IJK IJK

IJK

RMS ϕ ϕ= −∑  4.1.1 

As the distribution function is progressively ensemble averaged, the RMS decreases and 

the distribution converges towards the GS.  It is difficult to draw a conclusion about the 

noise during the transient relaxation because the solution starts with smooth distribution 
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and the statistical fluctuations take several steps to grow.  For transient problems 

ensemble averaging can become expensive, but for steady problems one can obtain 

acceptable results using very small depleting fractions.   

 

Figure 4.1.4.  The RMS difference between an un-averaged GS solution and ensemble 
averaged solutions generated with a 5% depleting fraction.   

In addition to the RMS, the computed entropy is very sensitive to the statistical 

noise.  After ensemble averaging the 5% scheme over as few as 10 independent 

relaxations, the entropy converges to within 2% of the GS, figure 4.1.5.  Statistical 

fluctuations cause the entropy to undershoot because the Maxwellian is defined as the 

maximum entropy distribution that is invariant under collisions, and any deviation away 

from that distribution due to statistical fluctuations will result in reduced entropy.   
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Figure 4.1.5.  The entropy evolution for ensemble averaged solutions generated with a 
5% depleting fraction compared to the N

2
 solution. 

In Figure 4.1.6, the entropy variation is plotted for depleting fractions of 80% and 

40% to show that accurate transient solutions can be obtained without ensemble 

averaging provided an adequate depleting fraction is used.   

 

Figure 4.1.6.  The entropy evolution without ensemble averaging for solutions generated 
with 40% and 80% depleting fractions. 
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The slight difference between the entropy in Gold Standard and the 80% depletion 

fraction calculation can be accounted for by statistical noise in the replenishing steps, 

using 4 replenishing pairs vs. 10, as well as the depleting step. 

In addition to increasing the depleting fraction to reduce the noise, one can also 

change how many replenishing pairs are used: four were used here. The noise associated 

with the replenishing integral is highly dependent on the depleting fraction because the 

depleting fraction determines how much mass must be depleted, and consequently 

replenished, with each collision partner. As the depleting fraction decreases, the number 

of replenishing pairs becomes increasingly important.  Consider now the time evolution 

of a Maxwellian distribution with a fixed depleting fraction of 40% and 1, 4, and 8 

replenishing pairs. A Maxwellian should remain Maxwellian, but statistical fluctuations 

are introduced by the evaluation of the collision integral. The gold standard for this set of 

plots was generated by using the N
2
 method with 10 replenishing pairs and then ensemble 

averaging 200 independent runs.  Instantaneous slices of the distribution are plotted in 

figure 4.1.7 for different numbers of replenishing pairs.   

 

Figure 4.1.7.  Slices of a Maxwellian distribution generated with different numbers of 
replenishing pairs. 
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Changing the number of replenishing pairs from 1 pair to 8 pairs does not seem to 

make a significant difference to the profile.  With only one replenishing pair, 

instantaneously there is a slight overshoot at the center of the distribution but at other 

realizations the center of the distribution undershoots.  To evaluate the noise, the entropy 

and RMS are also plotted for various numbers of replenishing pairs in figures 4.1.8 and 

4.1.9. 

 

Figure 4.1.8.  Entropy evolution of a Maxwellian distribution for various numbers of 
replenishing pairs per collision. 

 

 

Figure 4.1.9.  RMS between the GS solution and solutions computed with various 
replenishing pairs per collision. 
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  Although small, the GS method still has statistical noise due to the replenishing 

integral and this noise is also plotted as a reference.  For a depleting fraction of 40%, 

increasing the number of replenishing pairs from 1 to 4 reduces noise and improves 

accuracy of the calculated entropy, but accuracy is not greatly improved by using 8 

replenishing pairs instead of 4. The decrease of error when replenishing to 4 pairs instead 

of 1 pair results from a smoother distribution of the replenished mass, i.e. a more accurate 

evaluation of the replenishing term in the collision integral. However, after a certain 

point, further refinement of the replenishing integral does not help much because the 

error mostly arises from the depleting integral. To optimize the scheme, it is important to 

match the errors associated with the replenishing and depleting steps. 

To characterize the performance of the scheme, we relax a Maxwellian 

distribution for many different depleting and replenishing configurations and look at the 

computational time and RMS. The RMS is normalized by the peak value of the 

distribution function. 

Figure 4.1.10 shows the mean RMS plotted against computational time for both 

methods. Numbers of replenishing pairs ranging from 1 to 10 were used with the N
2
 

method. Depleting fractions between 1% and 90% and replenishing pairs between 1 and 

10 were used with the new scheme.  

When plotted on a logarithmic scale, both schemes show the same rate of 

convergence.  To reduce the error by an order of magnitude, computational time must 

increase by two orders of magnitude.  It is impossible to reduce the computational time of 

the N
2
 method below the time for computing with one replenishing pair.  With the new 

method, it is possible to run much quicker at the expense of increased noise in the 

distribution function.  Integration tends to smooth out the statistical fluctuations when 
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calculating physical properties such as the number density and temperature, resulting in 

smoother macroscopic properties. 

 

Figure 4.1.10.  Rate of convergence by varying the depleting fraction and number of 
replenishing pairs. 

The studies above were performed on a 11
3
 grid with a scaled velocity spacing of 

0.5 and scaled time step of 0.2.  If the time step is decreased, the amount of mass moved 

as a result of the collision also decreases since: 

 Depleting

IJK IJK
t nϕ ϕ∆ = ∆  4.1.2 

Consequently, if the time step is very small the amount of mass distributed per 

collision is small and a smaller depleting fraction can be used.  This becomes 

increasingly important when coupled with the convection step because stability of the 

convection routine requires a sufficiently small time step, see chapter 3 section 3.  For 

example, in a 1D shock calculation, the scaled time step can be limited to than 0.1.  For 

this smaller time step, a 5% depleting fraction produces less noise than with a time step 

of 0.2.  In cases previously presented, the depleting fraction is a fixed parameter but this 

is in general not a requirement.  The depleting fraction at a point 
IJK

ϕ can be made 
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proportional to the amount of mass at
IJK

ϕ .  For grid points where the distribution 

function is small, there is little mass and consequently collisions have a relatively small 

effect making a smaller depleting fraction desirable.  Near the mean velocity, where the 

distribution function is usually largest, collisions cause relatively more mass to be 

shuffled and consequently a larger depleting fraction is appropriate.  To improve the 

efficiency, a variable depleting fraction, DF, is used, where the depleting fraction varies 

linearly from a minimum depleting fraction at 
min

ϕ  to a maximum depleting fraction at 

max
ϕ .   

 
( )

( )min max min

max

DF( ) DF DF DF
i

i

ϕ η
η

ϕ
= + −  4.1.3 

Figure 4.1.11 shows a plot of minimum depleting fraction and maximum 

depleting fraction contoured by the CPU time per step and line contoured by the RMS.   

 

Figure 4.1.11.  Contour plot for a variable depleting fraction described by equation 4.1.3.  
CPU time is the time per collision step and is color contoured and the rms 
error in the distribution is contoured by lines. 
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Figure 4.1.11 shows that accurate results can be obtained more efficiently using a 

variable depleting fraction than with a fixed depleting fraction.  For example, it is 

possible to achieve the same error for 20% of the computational cost by using a depleting 

fraction that varies from 10% to 75% instead of a fixed depleting fraction of 40%. 

Section 2: Different Grid Resolutions 

When creating a grid in velocity space, both the range as well as the velocity 

spacing are important parameters.  To determine whether the velocity domain extends far 

enough, it is not sufficient to simply truncate where the distribution goes to zero.  It is 

also important to show that the higher physical moments are computed accurately.  For 

example, if the integrand in the 2
nd

 moment does not go to zero near the fringes, then the 

computed temperature will undershoot.  Figure 4.2.1 shows a slice of the distribution 

function and the corresponding integrand of the 2
nd

 moment.  The velocity domain 

extends to 1 2ˆ2.5T± .  The k
th
 moment of the distribution function is given by: 
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ˆ
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i i IJK V

IJK

Q u
n

η ϕ β= −∑  4.2.1 

 

Figure 4.2.1.  Planar slices of the integrands in the zeroth and 2
nd

 moments of the 
Maxwellian distribution function.  The velocity domain extends to ±2.5.   

In order to resolve the higher moments, the velocity space must be larger.  Fortunately, it 

is not important to resolve the very high moments because those have no physical 
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significance.  The heat flux is the proportional to the 3
rd

 moment of the distribution and 

the 4
th
 moment has no known physical meaning.  When the velocity domain extends to 

1 2ˆ2.5T± , the integrand in fourth moment does not go to zero at the edge of the domain, 

figure 4.2.2. 

 

Figure 4.2.2.  Planar slice of the 4
th
 moment of a Maxwellian distribution.  The velocity 

domain extends to ±2.5. 

 

The scaled velocity spacing affects the error associated with the specific Reimann 

sum numerical integration routine and it limits how many velocities a discrete velocity 

gas must have.  For practical problems, it is important to have a relatively coarse 

discretization in order to be computationally efficient.  The velocity distribution is 

initialized by evaluating a continuous Maxwellian with an input density, temperature, and 

velocity at each discrete point in velocity space.  Due to errors in numerical integration, 

the calculated moments from the discrete distribution are not the same as the moments of 

the continuous distribution.  Figure 2.2.3 shows several moments of the discrete 

distribution function scaled by the corresponding moments of the continuous distribution 

function and plotted for a range of velocity spacings.  Each of the moments diverges 

significantly from the continuous function when the scaled velocity spacing exceeds the 

mean thermal speed. 
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Figure 4.2.3.  Numerical integration errors in density, temperature, entropy, and the 4
th
 

moment.  The properties are scaled by the analytic values. 

The above figure shows only the errors associated with numerical integration 

because the moments were calculated before collisions occur.  However, once collisions 

are turned on errors associated with having a limited number of velocities enter the 

solution.  In figure 4.2.4 the entropy of a relaxed discrete distribution is compared to the 

computed entropy before collisions are turned on.  

 

Figure 4.2.4.  The error in entropy plotted for a relaxed distribution for various velocity 
spacings. 
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The relaxed distribution was generated by ensemble averaging to ensure smooth 

solutions, decoupling the errors caused by statistical noise.  Once collisions are turned on, 

the entropy departs from the analytic value near a scaled velocity spacing of 0.7.  Since 

the collision routine is conservative, the density, temperature, and velocity are conserved 

for all velocity spacings.  Figure 4.2.5 shows the convergence of the 4
th

 moment.  In 

order to properly resolve the 4
th

 moment, the scaled velocity needs to be less than half the 

mean thermal speed of the gas. 

 

Figure 4.2.5.  The error in the 4
th
 moment plotted for various grid spacings 

The departure of the higher moments from the analytic values when collisions are active 

is not completely understood.  When the distribution function is coarse, post-collision 

velocities are more likely to lie farther from a grid point.  Consequently, the interpolation 

equations may be introducing errors by mapping to points that are further away. 

Section 3: Solution of the Reflected Shock 

In this section the results of the numerical solution of the Boltzmann equation for 

a moving shock are discussed.   
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PROBLEM STATEMENT 

To generate the shock, a gas initially moving left, figure 4.3.1, is brought to rest 

by a specular wall.  A shock forms at the wall and propagates upstream, bringing the flow 

to rest while increasing the temperature and density.  At the right boundary, the 

distribution function is set by a zero flux boundary condition. 

 

 

Figure 4.3.1. 1D traveling shock schematic.  The shock forms by reflection off the 
specular wall.  

In order to assess the accuracy of the numerical solution, comparisons to analytic values 

can be made outside of the shock.  Comparisons are made to DSMC inside the shock.  

Jump conditions for density, pressure, and temperature across the shock, are determined 

by the Rankine-Hugoniot equations (see chapter 2 section 3) and the shock speed is 

determined from continuum dynamics.  The internal shock structure depends on 

molecular cross sections and pseudo Maxwell molecules are used.  The shock thickness 

δ, shown in figure 4.3.2, is defined by the maximum slope thickness based on the density.  

In addition to the shock thickness, the density jump lags behind the temperature shock 

and the corresponding separation distance, s, is also evaluated. 
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Figure 4.3.2.  A schematic showing different parameters to quantify the internal shock 
structure. 

NUMERICAL RESULTS:  

Initial results were generated using a scaled velocity spacing of 0.5 spanning 

4
r

η± .  The upstream scaled density and temperature are 1.0 and the initial scaled velocity 

is –1.0.  These conditions create a reflected Mach 1.97 shock.  The time step and physical 

spacing are limited by the CFL condition,  

 max

ˆ
ˆ 1

t
η

α

∆
<  4.3.1 

where α is 
up

x λ∆ and t̂∆  is the time step scaled by the mean collision time.  In general, 

the physical spacing should be less than the mean free path, and α was set to 0.5 for the 

following calculations. With this scaled space step and a maximum scaled velocity of 4, 

the time step is limited to less than 0.12 and in the following calculation a time step of 

0.05 was used.  Since the goal is to understand the limitations and performance of the 

collision steps, a small time step was used to minimize errors associated with convective 

time discretization. 
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 Three different snapshots are plotted in figure 4.3.3 showing the density and 

temperature when the shock first forms, is fully developed, and at an intermediate 

position.  The density and temperature are scaled by the Rankine-Hugoniot jump 

conditions, (Chapter 3.3).  A variable depleting fraction, (see Chapter 4.2), ranging 

linearly from 10% to 60% and 2 replenishing pairs were used in the computation of the 

collision integral.  The Rankine-Hugoniot jump conditions are recovered to within 1%. 

  

 
. .

up

R H

ρ ρ
ρ

ρ
∗

−
=

∆
 4.3.2 

 
. .

up

R H

T T
T

T

∗
−

=
∆

 4.3.3 

 

x/λ
up

S
c
al

ed
P

ro
p
e
rt

ie
s

0 25 50 75

0

0.25

0.5

0.75

1

1.25

ρ
∗

T
*

t=100t=5 t=30

 

Figure 4.3.3.  Mach 1.97 shock profiles when the shock first forms ( t̂ =5), when the 

shock is fully developed ( t̂ =100), and an intermediate position ( t̂ =30). 
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The non-equilibrium induced by the specular wall by the sudden reflection at 

ˆ 0t += affects the solution until the shock moves about 25 upstream mean free paths from 

the wall.  Near the wall, there are slightly larger variations from the Rankine-Hugoniot 

jump conditions.  After a scaled time of 30, the shock is still near the wall and the profile 

is not quite symmetric.  At this location, the temperature leads the density more on the 

downstream half of the shock than the upstream half of the shock.  After the shock passes 

25 mean free paths from the wall, the shock shape asymptotes to a constant value.  For 

this Mach 1.97 shock, the maximal density gradient shock thickness is 8.2 upstream mean 

free paths.   

In addition to the temperature and density, it is also interesting to plot the higher 

moments of the distribution in figure 4.3.4.   
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Figure 4.3.4.  Snapshots of the scaled heat flux for a Mach 1.97 shock. 

When the shock first forms, there is a peak in the heat flux corresponding to the 

instantaneous temperature rise imposed by the specular boundary condition.  However, 
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once the shock propagates about 25 mean free paths away from the wall, the maximum 

heat flux inside of the shock asymptotes to a constant value.  At a scaled time of 5, when 

the shock is still close to the wall, the heat flux is slightly negative on the upstream side 

of the shock.  The undershoot tends to occur regardless of how finely the collision 

integral is approximated.  This phenomenon vanishes after the shock moves sufficiently 

far from the wall, implying that the specular wall causes the disturbance.  In addition, the 

computed heat flux upstream of the shock has less statistical noise than the computed 

heat flux downstream. 

In figure 4.3.5, slices of the distribution are plotted upstream, downstream, and 

inside of the shock. 
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Figure 4.3.5.  Slices of the distribution along the x-velocity axis downstream, upstream, 
and inside the shock.  The symbols are the lattice sites. 
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Ahead of the shock, the distribution function is moving to the left with a mean 

velocity of –1.0.  As the shock forms, the mean velocity shifts towards the right and the 

distribution becomes shorter and wider.  Midway through the shock, the distribution 

function becomes taller and widens.  In all three cases, the tails of the distribution go to 

zero at the edge of the domain. 

VELOCITY GRID RESOLUTION 

For efficient calculations, the velocity domain must be relatively coarse and 

understanding the limits is important for optimizing the scheme.  Four velocity grids with 

different resolutions are used to solve a traveling Mach 1.97 shock.  Each velocity grid 

tested extends to 4
r

η±  but the scaled velocity spacing is varied from 0.67 to 1.33.  A 

variable depleting fraction ranging from 1% to 10% was used along with two 

replenishing pairs per collision for each calculation.   
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Figure 4.3.6.  Mach 1.97 shock profiles generated with velocity grids of varying 
resolutions. 
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In figure 4.3.6, the density is plotted at a scaled time of 75.  At this time, the 

shock is far enough from the wall so that boundary effects are confined near the wall and 

not seen in the shock wave.  All four solutions show relatively good agreement on the 

shock position, showing that the computed shock speed is not affected by the 

discretization.  The density profiles for the higher resolution velocity grids with a scaled 

spacing of 0.67 and 0.8 agree very well.  When the scaled velocity spacing is further 

increased to 1.0, the density starts to undershoot slightly upstream of the shock.  When 

the scaled velocity spacing is further increased, the density undershoot increases.  

Additionally, the fluctuations near the wall tend to be larger when a coarser grid is used. 
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Figure 4.3.7.  Mach 1.97 temperature profiles computed with velocity grids of varying 
resolutions. 

The temperature is more sensitive to the grid resolution than the density, and 

corresponding temperature profiles are shown in figure 4.3.7. Similar to the number 
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density, the temperature undershoots upstream of the shock when the scaled velocity 

spacing β ≥ 1.0.  When β > 1.0, large errors are expected due to error in numerical 

integration (Section 4.2).  In figure 4.3.8, slices of the distribution are plotted for coarse 

and fine grid resolutions immediately upstream of the shock and behind the shock.  The 

profiles are vastly different suggesting that the undershoot can not be attributed solely to 

errors in numerical integration.  When the velocity spacing exceeds a certain threshold, 

too much mass is depleted from the center of the distribution function. 
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Figure 4.3.8.  Slices of the distribution function immediately ahead and downstream of a 
Mach 1.97 shock.  The symbols correspond to lattice sites. 

  Different depleting fractions are used to see if the undershoot is related to the 

coarseness in evaluating the collision integral. Temperature profiles generated via 

depleting fractions of 1% and 60% and a grid with a scaled velocity spacing of 1.0 are 

plotted in figure 4.3.8. 
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Figure 4.3.8.  Mach 1.97 temperature profile obtained with a scaled velocity spacing of 
1.0 and depleting fractions of 1% and 60%.   

Although the noise is reduced as the depleting fraction is increased to 60%, the 

temperature continues to undershoot upstream of the shock.  Comparisons are not made 

to the N
2
 method because even with a coarse velocity discretization the N

2
 method 

requires several weeks to obtain a solution.  The only way to prevent this is to improve 

the resolution such that the scaled velocity spacing is less than 1.0. 

INTERNAL SHOCK STRUCTURE 

The flow is not in equilibrium inside the shock wave and the shock structure 

depends on how the gas equilibrates.  In general, the quicker the gas equilibrates, the 

thinner the shock wave.  Comparisons of the internal shock structure are made to DSMC 

for three different cases: a Mach 1.97 shock wave, a weak Mach 1.2 shock wave, and a 
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stronger Mach 6 shock wave.  The DSMC solutions are generated using Bird’s DSMC1S 

code [1] originally presented in 1988 and more recently updated in 1994. 

In figure 4.3.9 a Mach 1.97 traveling shock computed by the discrete velocity 

model is compared to a stationary Mach 1.97 computed by DSMC.  The traveling shock 

wave profile was taken when the shock was 70 mean free paths from the wall.  A velocity 

space spanning to ±4ηr with a scaled velocity spacing of 0.8 was used.  A time step t̂∆  = 

0.05 and a scaled physical spacing α = 0.5 were used and the computational time required 

to perform 2000 time steps on 200 points was 2870 seconds.  A depleting fraction 

ranging from 0.01 to 0.1 was used along with 2 replenishing pairs per collision. 
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Figure 4.3.9.  Mach 1.97 shock profiles comparing discrete velocity solutions to DSMC 
solutions. 

The density profile matches the DSMC solution very closely on both the upstream 

and downstream halves of the shock.  The corresponding shock thickness measured by 
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the maximum density gradient is 8.2 upstream mean free paths.  On the downstream half 

of the shock, the temperature profile closely matches the DSMC.  On the upstream side 

of the shock, the discrete velocity temperature profile lags slightly behind the DSMC 

profile.  The shift between the temperature and density computed with the discrete 

velocity model is 2.4 mean free paths where the shift computed with DSMC is 2.6 mean 

free paths.  As the Mach number is decreased the shock thickness becomes increasingly 

large and the jump conditions across the shock wave decrease. 
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Figure 4.3.10.  Mach 1.2 shock profiles comparing discrete velocity and DSMC 
solutions. 

Figure 4.3.10 shows the results of a weak shock (Mach 1.20) calculation. The 

statistical fluctuations are more noticeable than the higher Mach number cases because 

the jump conditions across a weak shock are very small and nearly on the same order as 

the statistical fluctuations.  To obtain a smooth DSMC profile, 10 million simulated 
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particles were used along with 200 cells in physical space.  As expected the shock 

thickness is much larger for a low Mach number compared to the higher Mach number 

cases.  A variable depleting fraction ranging from 10% to 60% was used in the discrete 

velocity model.  A time step of 0.05 and physical spacing of 0.5λupstream were used and the 

physical domain was generated using 200 physical cells.  The shock was allowed to 

propagate for 2000 time steps and the profile was captured at time t̂ = 100.  Using the 

above conditions, the DVM solution required 208 minutes.  At a low Mach number of 1.2 

the Rankine-Hugoniot conditions are satisfied, but there are slight differences between 

the DSMC solution and the DVM solution.  The DSMC shock wave is thicker than the 

discrete velocity shock wave and the difference is more evident at lower Mach numbers 

than higher Mach numbers.  As the Mach number is decreased below 1.25, the shock 

wave thickness increases rapidly [1].  If the Mach numbers for the DSMC and DVM 

cases do not match very closely because of discretization errors, the shock thicknesses 

may be noticeably different.  Although the DSMC profile was generated with 10 million 

molecules, there is still noise in the solution.  The DSMC code attempts to keep the shock 

stationary by slightly adjusting the downstream boundary conditions, but for solutions 

with statistical noise the shock wave may wander slightly.  If the shock wave oscillates 

slightly, the shock wave profile will smear because of the ensemble averaging.  For 

higher Mach number cases, there are a wide range of velocities and very high 

temperatures exist downstream of the shock wave. 

To generate a Mach 6 shock, figure 4.3.12 the velocity domain must be very large 

because the temperature increases by a factor of 12 and the corresponding downstream 

distribution function is relatively wide and flat.  In addition to needing a large velocity 

domain, the resolution has to be sufficient to resolve the cold and narrow upstream 

distribution function.  Numerical tests have shown that in order to avoid large truncation 
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errors downstream of the shock wave, the velocity domain must extend to ±2.5ηrT 
1/2

.  

The scaled velocity spacing needs to be less than 1.0T 
1/2

 to resolve the profile upstream 

of the shock wave.  For a Mach 6 shock, the velocity domain extends to ±11.4ηr and the 

scaled velocity spacing is 0.95.  The resulting velocity space contains 15625 points and 

the corresponding computational costs are very large.  A very low depleting fraction 

ranging from 0.01 to 0.05 was used along with 2 replenishing pairs per collision.  The 

computational time required to perform 1200 time steps on 100 points in physical space 

was 12.1 hours. 
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Figure 4.3.11.  Mach 6.01 shock profiles comparing discrete velocity and DSMC 
solutions. 

In figure 4.3.11, the shock thickness computed by the discrete velocity model is 

9.5λupstream, which is slightly thinner than the 13.0λupstream shock thickness computed by 

DSMC.  Additionally, the separation distance between the density and temperature waves 
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computed by the discrete velocity is 1.75 mean free paths less than the separation 

computed with DSMC. 

Relatively good agreement between DSMC and the discrete velocity model has 

been obtained for Mach 1.97 shock waves, but at higher Mach numbers the waves 

computed with the discrete velocity model tend to be steeper than the profiles generated 

with DSMC.  To find the source of the discrepancy, the time step, physical spacing, 

resolution in velocity space, range of velocity space, and depleting fractions have been 

adjusted with little success in exactly matching the DSMC profile.  The differences are 

consistent with those presented by the ∆-ε method (Tan, 1991) where at higher Mach 

numbers discrepancies in the temperature profiles were also found. 

COST COMPARISON 

To evaluate the performance, the time required to generate a solution with a 

certain level of noise is compared for the discrete velocity and DSMC solutions.  In all 

cases previously presented, the DSMC solutions required less time than the discrete 

velocity model.  However, this is not a direct comparison because the DSMC solution 

was for a steady shock wave and the discrete velocity model was applied to a traveling 

shock wave.  Since the DSMC code generates a steady shock wave, time averaging is 

used to rapidly obtain smooth profiles where averaging is not used with the discrete 

velocity model.  For a direct comparison of the computational costs, the discrete velocity 

model was adapted to a steady shock wave and the averaging procedure in the DSMC 

code was turned off.  Ensemble averaging was not used to characterize the performance 

in both the DSMC and discrete velocity calculations because for unsteady problems 

ensemble averaging may not be permissible. 

To generate a steady shock wave the right half of the physical domain was 

initialized to the upstream flow conditions and the downstream half of the physical 
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domain was set to the corresponding Rankine-Hugoniot conditions.  A zero flux 

boundary condition was imposed at both the upstream and downstream boundaries.  

Using the updated boundary and initial conditions, a steady Mach 1.97 shock wave was 

used to compare the computational performance between the discrete velocity and DSMC 

models. 

All simulations were performed on a desktop computer with an Intel 2.4GHz 

processor, 4GB of RAM, and a 2MB cache.  The noise was evaluated by computing the 

RMS, eq 4.4.1, in sections downstream and upstream of the shock wave that were at least 

20 physical cells away from the boundaries and sufficiently far from the shock. 

 ( )
2

1

1 sN

i

is

RMS n n
N =

= −∑  4.4.1 

In both the DSMC and discrete velocity simulations, 200 physical cells with a 

scaled physical spacing α = 0.5 and a time step t̂∆  = 0.05 were used.  After a steady 

shock developed, the simulation continued to run for an additional 1500 time steps and 

the corresponding computational time was recorded.  To evaluate the rate of 

convergence, the DSMC simulation was performed 10 times by varying the numbers of 

computational molecules.  The discrete velocity simulation was executed 14 times with 

different depleting fractions and a fixed 2 replenishing pairs per collision.  A linearly 

varying depleting fraction, equation 4.1.3, was used and this was adjusted by keeping the 

lower bound fixed at 1% and changing only the upper bound from 5% to 70%.   

Figure 4.4.1 shows the noise in the density upstream and downstream of the shock 

wave plotted against the corresponding computational time per time step. 
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Figure 4.4.1.  Noise in the density upstream (squares) and downstream (triangles) of the 
shock wave plotted against the computational time for discrete velocity and 
DSMC solutions. 

In both the DSMC and DVM (discrete velocity model) computations, the noise is 

less on the upstream side of the shock than the downstream half.  This may occur because 

the flow upstream of the shock is supersonic and the noise largely does not propagate 

upstream, whereas downstream of the shock wave the flow is subsonic and fluctuations 

can propagate upstream.  The discrete velocity model performs better than DSMC 

upstream of the shock wave.  For a smooth upstream solution with noise less than 0.004, 

the DVM is approximately an order of magnitude quicker than DSMC.  Downstream of 

the shock wave, the differences between DSMC and the DVM are subtle, with only 

marginal improvements to the performance.  DSMC performs better downstream of the 

shock wave because the downstream density is higher and consequently more 
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computational molecules are present in the downstream region.  Similarly, upstream of 

the shock wave the density is lower and there are fewer computational molecules to 

sample from.  In the discrete velocity model, there are not particles and consequently the 

lower density downstream does not adversely affect the noise level. 

The cost comparisons above only address the affect of varying the depleting 

fraction, but there exist other ways to modify how accurately the collision integral is 

computed.  In addition to the depleting fraction, number of replenishing pairs, time step, 

physical spacing, velocity spacing, and the range of the velocity space can also affect the 

computational performance.  The parameter space becomes more complicated when a 

varying depleting fraction is used instead of a fixed depleting fraction.  Consequently, 

there are many other parameters that have not been examined in a performance study that 

can change the computational efficiency.  Modifications to only the depleting fraction 

were used because from experience it has a larger affect on how accurately the collision 

integral is computed. 
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CHAPTER 5: CONCLUSIONS 

Summary of Key Points 

Investigation of a discrete velocity model was motivated by the need for a 

Boltzmann equation solver that can be applied to unsteady flows that bridge the rarefied 

and continuum regimes.  In this regime the flows are non-equilibrium and highly 

collisional and consequently it is computationally expensive to obtain smooth transient 

data.  The key features of the proposed discrete velocity method are: 

• Interpolation algorithm was developed to allow for arbitrary post-collision velocities. 

• The computational cost was reduced by statistically evaluating the collision integral. 

• Homogeneous relaxation results agree well with analytic results for relaxation of the 

Bobylev Krook Wu distribution. 

• 1D results for traveling shock waves agree well with DSMC solutions. 

INTERPOLATION SCHEME 

In traditional discrete velocity models, the post collision velocities are restricted 

to those that lie precisely on the grid.  This can artificially limit the number of collisions 

and consequently affect the rate at which the gas equilibrates.  To solve this problem, an 

interpolation scheme was developed that maps points that lie off the grid onto a stencil of 

grid points that surrounds the point to be interpolated.  Since elastic collisions preserve 

mass, momentum, and energy, the interpolation scheme was designed to also preserve 

those quantities.  This interpolation routine allows the discrete velocity scheme to permit 

post-collision velocities that lie between grid points or entirely outside of the velocity 

domain.  In order to satisfy the conservation equations, the interpolation depletes mass 

from ‘external points’ of a several point stencil.  If the ‘external’ points do not have 
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enough mass to accommodate the depletion, the distribution function can go negative.  

‘Sweeping’ algorithms have been developed to remove the negative values, but this is 

only performed to evaluate the entropy.  In general, the negative values are not a problem 

because the distribution function only goes negative near the fringes and the magnitude 

of these negative values is very small. 

STATISTICAL EVALUATION OF THE COLLISION INTEGRAL 

The collision integral can be accurately evaluated by considering collisions 

between each point in velocity space with all other points in velocity space.  This is 

computationally expensive, ( )2

V
O N .  To reduce the computational cost, the collision 

integral is solved statistically by colliding each point in velocity space with a handful of 

randomly selected collision partners.  The collision partners are selected via an algorithm 

that biases points that contribute more to the collision integral.  To reduce the 

computational cost associated with an acceptance-rejection, a new selection scheme was 

implemented that selects collision partners that contribute more to the collision integral 

with only one random number call.  It was found that relatively smooth solutions for the 

macroscopic variables of interest can obtained using a relatively small set of randomly 

chosen collision partners.  Further improvements were made by using a varying depleting 

fraction.  For collisions that result in small changes to the collision integral a small 

depleting fraction was used.  The numerical scheme was then applied to homogeneous 

and one dimensional problems. 

HOMOGENEOUS RESULTS 

The scheme was first applied to homogeneous relaxation problems to test the 

collision routine.  The two test problems analyzed were relaxation of a Maxwellian 

distribution and relaxation of the Bobylev-Krook-Wu distribution.  The collision routine 
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was shown to preserve the Maxwellian distribution and conserved mass, momentum, and 

energy.  The Bobylev-Krook-Wu distribution has an analytic solution describing its time 

relaxation.  Using a relatively small depleting fraction of 40%, it was found that the 

entropy tracks the analytic solution to within 0.1%.  Although computational time can be 

reduced by using a depleting fraction of 5%, the entropy falls short of the analytic value.  

The “Gold Standard” entropy is recovered  if the distribution functions generated with a 

5% depleting fraction are ensemble averaged.  By solving the collision integral 

statistically with a small depleting fraction, it is possible to increase the speed by nearly 

two orders of magnitudes compared to the 2

V
N method.  The ability to perform collisions 

quicker allows for efficient calculation of 1D unsteady problems. 

1D TRAVELING SHOCK RESULTS 

The discrete velocity method was extended to one dimension and used to solve a 

traveling normal shock problem.  The Rankine-Hugoniot jump conditions were recovered 

for shock waves ranging from Mach 1.2 to Mach 6.  The velocity space was limited to 

scaled velocity spacings being less than ˆ1.0
up

T .  If the scaled velocity spacing is too 

large, then the density and temperature tend to undershoot upstream of the shock.  The 

internal shock structure was compared to DSMC calculations.  The DSMC solutions 

compared well for a Mach 1.97 shock with slight variations occurring on the upstream 

half of the temperature profile.  There are slightly larger variations between DSMC and 

the new model for a stronger Mach 6 shock wave.  The discrete velocity model slightly 

under predicts the shock thickness separation distance between the density and 

temperature waves.  The Mach 1.2 shock wave structure closely matches the DSMC 

solutions, but a high accuracy solution to the collision integral is required to ensure that 

the statistical fluctuations are much less than the jump conditions across the weak shock 

wave. 
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Future Work 

In previous discrete velocity models, the restriction of post-collision velocities 

limits the applicability to problems with inelastic collisions and multiple species.  For 

inelastic collisions, the relative velocity vector can shrink or grow.  Consequently, it is 

possible that no replenishing velocities will lie on the grid.  The interpolation algorithm 

that maps points that lie off the grid back onto the nearby grid points can be extended to 

inelastic collisions. 

Since the post-collision velocities are not restricted by the structure of the grid, it 

is now possible to use a non-uniform velocity grid.  Non-uniform velocity grids have 

been applied to spectral models [29] and shown possible for discrete velocity models in 

[17], but challenges remain on how to cluster points in a non-uniform velocity grid.  The 

interpolation scheme can also be used to transition from a coarse velocity grid to a fine 

velocity grid or vice versa.  For example, suppose a solution to a steady high Mach 

number normal shock is desired.  On the upstream side of the shock the distribution 

function will be narrow and centered about a mean velocity different than the 

downstream mean velocity.  On the downstream side of the shock, the distribution 

function will be wider and centered about a different mean velocity.  Since the two 

distributions upstream and downstream are vastly different it may be beneficial to have 

different velocity grids upstream and downstream of the shock. 
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APPENDIX A:  STATISTICAL EVALUATION OF THE 
DEPLETING INTEGRAL 

Direct evaluation of the depleting integral is computationally expensive and a 

statistical method is used to reduce the cost.  For isotropic scattering the angular 

dependence can be integrated immediately and the incremental depletion at a given point 

î
η  is given by 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

i i

depl i i i T i i i T i
t g d t g d

ζ ζ

ϕ η ϕ ζ ϕ η σ ζ ϕ η ϕ ζ σ ζ∆ = ∆ = ∆∫ ∫ . 1 

In a discrete gas, the integral is the sum of delta functions located at each discrete 

velocity. We assume a constant scaled velocity spacing β in each velocity coordinate. 

 ( ) ( ) ( ) 3

ˆ ˆ

ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

i i

depl i i i T
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ζ η

ϕ η ϕ η ϕ ζ σ β
≠
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If pseudo-Maxwell molecules are assumed, ˆ ˆ 1gσ =  and Eq. 2 simplifies to: 

 ( ) ( ) ( ) ( ) ( )( )3 3

ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

i i

depl i i i i i
t t n

ζ η

ϕ η ϕ η ϕ ζ β ϕ η β ϕ η
≠

∆ = ∆ = ∆ −∑ . 3 

Note that the depletion can be calculated explicitly at each computational step. In 

the proposed statistical representation, points participate in collisions in two different 

ways.  Each point in velocity space is first chosen as a test point and collides with a set of 

randomly chosen field points.  Secondly, the point may be randomly chosen as a field 

point when the depletion is computed for other velocities as test points. Half of the 

depletion, given by Eq. 3, should occur in each case. The goal of the statistical scheme is 

to ensure that Eq. 3 is satisfied on the average; i.e. the expectation values of the depletion 

should be half of the value given by Eq. 3 when the velocity point is a test point, and 

when it is a field point. In the following derivation, η̂  denotes the velocity of a test point, 

and ζ̂ denotes the velocity of a randomly chosen field point.   
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First, consider the depletion at η̂  when it is a test point colliding with field points 

ζ̂ .  If the velocity distribution function is positive everywhere, the incremental depletion 

for the test point is simply half of Eq. 3 

 ( ) ( ) ( )( )31ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ|
2

half

Depl
t nϕ η ζ ϕ η ϕ η β∆ = ∆ − . 4 

However, negative values of the distribution are permitted in the present scheme.  

A single depleting collision between a velocity η̂ and ζ̂ ∗ is the integrand of Eq. 1.  

 ( ) ( ) ( )ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ|depl t gϕ η ζ ϕ η ϕ ζ σ∗∆ = ∆ . 5 

If one of the collision partners in Eq. 5 is negative, a depleting collision becomes 

a replenishing collision because of the negative sign.  If both collision partners are 

negative, the negative signs cancel and the collision remains a depleting collision.  

Equation 4 is modified to allow for negative values and the depletion at the test point is 

defined by 

 ( ) ( ) ( )( ) ( )( )31ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ| 2 sgn
2

half

Depl neg
t n nϕ η ζ ϕ η ϕ η β ϕ ζ∆ = ∆ − − , 6 

where 

 ( )
1 0

sgn
1 0

x
x

x

≥
= 

− <
. 7 

Equation 6 now depends on the sign of ( )ˆϕ̂ ζ , e.g. if the field point is negative and the 

test velocity is positive, the depleting collision acts as a replenishing collision.  Equation 

6 can be re-written by noting that ( )3 ˆˆˆ ˆ2
neg

n n β ϕ ζ ∗− =∑  

 ( ) ( ) ( ) ( )( )31ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ| sgn
2

half

Depl
t

ζ η

ϕ η ζ ϕ η β ϕ ζ ϕ ζ
∗

∗

≠

 
∆ = ∆   

 
∑ . 8 

Equation 8 can be re-written as an expectation value, by replacing ( )( )ˆˆsgn ϕ ζ with the 

probability, Pneg, that ( )ˆϕ̂ ζ  will be negative: 
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( ) ( ) ( ) ( )( )

( ) ( ) ( )

3

ˆ ˆ

3

ˆ ˆ

1ˆ ˆˆˆ ˆ ˆ ˆ ˆ| 1
2

1 ˆˆˆ ˆ ˆ 1 2
2

half

Depl neg neg

neg

t P P

t P

ζ η

ζ η

ϕ η ζ ϕ η β ϕ ζ

ϕ η β ϕ ζ

∗

∗

∗

≠

∗

≠

 
∆ = ∆ − + −  

 

 
= ∆ −  

 

∑

∑

 9 

For a test point η̂ , the probability that the distribution function ( )ˆϕ̂ ζ at the 

randomly drawn field point is negative is: 

 

( )

( )
( )

( )
( )

3

3

ˆ ˆ

3

ˆ ˆ

ˆ ˆˆ
ˆ ˆ; 0

ˆˆ

 
ˆ

ˆ ˆ; 0
ˆˆ

neg

neg

neg

n

P
n

ζ η

ζ η

ϕ η β
ϕ η

ϕ ζ β

ϕ η
ϕ ζ β

∗

∗

∗

≠

∗

≠

− +
<




= 
− ≥




∑

∑

 10 

The probability of a negative partner being drawn depends on the sign of ( )ˆ ˆϕ η  because 

the test point is excluded from the set of available collision partners.  Note that ˆ 0,
neg

n <  

so Pneg > 0. 

First consider the case when ( )ˆ ˆ 0ϕ η ≥ .  When Eq. 10 is substituted into Eq. 9, the 

expectation for the depletion becomes: 

 ( ) ( ) ( ) ( )( )3 31ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ| 2
2

half

Depl neg
t nϕ η ζ ϕ η ϕ ζ β ϕ η β∗∆ = ∆ + −∑ . 11 

Simplifying and noting that ( ) 3ˆˆˆ ˆ2
neg

n n ϕ ζ β∗= +∑ , Eq. 11 becomes 

 ( ) ( ) ( ) 3

ˆ ˆ

1ˆ ˆˆˆ ˆ ˆ ˆ ˆ|
2

half

Depl
t

ζ η

ϕ η ζ ϕ η ϕ ζ β
∗

∗

≠

 
∆ = ∆   

 
∑ . 12 

Next consider the case when ( )ˆ ˆ 0ϕ η < .  When Eq. 10 is substituted into Eq. 9 the 

depletion becomes: 

 ( ) ( ) ( ) ( ) ( )( )3 3 31 ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ2 2
2

half

Depl neg
t nϕ η ϕ η ϕ ζ β ϕ η β ϕ η β∗∆ = ∆ + − −∑  13 

Simplifying and noting that ( )ˆ ˆ 0ϕ η < , Eq. 13 is identical to Eq. 12.  Therefore, the 

expectation value for the total depletion at test point η̂  is: 
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 ( ) ( ) ( )3

ˆ ˆ

1 ˆˆˆ ˆ ˆ ˆ ˆ
2

half

Depl
t

ζ η

ϕ η ϕ η β ϕ ζ
∗

∗

≠

 
∆ = ∆   

 
∑  14 

Next, consider the depletion at ζ̂  when it is a field point colliding with all other 

test points η̂ .  In the present scheme, the probability of a point located at ζ̂ being among 

the set of Mj collision partners for a test point η̂  is: 

( )
( )

( )
( ) ( )( )

( )
( )

( )
( )

( )

3 3

3 3 3 3

ˆ ˆ ˆ ˆ0 0
ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆsgn
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
P

ϕ η ϕ η
η η η η

β ϕ ζ β ϕ ζ ϕ ζ
ζ

β ϕ η β ϕ η β ϕ η β ϕ η
∗ ∗

∗ ∗ ∗

∗ ∗ ∗

> <
≠

= =
− −∑ ∑ ∑

. 15 

 In Eq. 15 the denominator is split into positive and negative components because 

the current scheme allows for the distribution function to be positive or negative.   

By defining the number density of negative mass, ˆ
neg

n as: 

 ( )
( )

3

ˆ ˆ 0

ˆ ˆˆ
neg

n
ϕ η

β ϕ η
∗

∗

<
=∑  16 

Eq. 15 can be re-written as:  

 ( )
( ) ( )( )

( )

3

3

ˆ ˆˆsgn
ˆ ˆ|

ˆ ˆˆ ˆ2
neg

P
n n

β ϕ ζ ϕ ζ
ζ η

β ϕ η
=

− −
. 17 

 Equation 17 is the probability of point ζ̂  being randomly selected to collide with 

η̂ .  The expectation value of the depletion at ζ̂  as a result of being randomly selected is 

the product of the probability of being selected, the total number of random collision 

partners Mj, and the depletion, 
j

d M , per collision partner: 

 ( ) ( )ˆ ˆˆ ˆ|
depl j

j

d
P M

M
ϕ ζ η ζ∆ = , 18 

where d is defined as: 

 ( ) ( )( ) ( )( )31 ˆˆ ˆ ˆ ˆ ˆˆ ˆ2 sgn
2

neg
d t n nϕ η ϕ η β ϕ ζ≡ ∆ − − . 19 

Substituting Eqs. 17 and 19 into 18 we obtain: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )3 31 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ| sgn sgn
2 2

half

depl
t tϕ ζ η ϕ ζ ϕ ζ β ϕ η ϕ ζ ϕ η ϕ ζ β∆ = ∆ = ∆  20 
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When summed over all velocities η̂  the expectation for the depletion at ζ̂  when chosen 

as a field point is: 

 ( ) ( ) ( )3

ˆˆ

1ˆ ˆˆ ˆ ˆ ˆ
2

half

depl
t

η ζ

ϕ ζ ϕ ζ β ϕ η
≠

∆ = ∆ ∑  21 

Adding the contributions from 14 and 21, the expectation for the total depletion is 

identical to that given by Eq. 3. 

To implement the above scheme into the computational code, Eq. 6 is used.  For 

each test point, a set of Mj collision pairs are preferentially selected based on mass.  The 

depletion, Eq. 6, is then evenly distributed among each collision pair.  This is then 

repeated for all test points in velocity space. 
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