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Statistical Methods for the Analysis of DSMC Simulations of 

Hypersonic Shocks 

 

 

 

James Stephen Strand, Ph.D. 

The University of Texas at Austin, 2012 

 

Supervisor:  David Goldstein 

 

In this work, statistical techniques were employed to study the modeling of a 

hypersonic shock with the Direct Simulation Monte Carlo (DSMC) method, and to gain 

insight into how the model interacts with a set of physical parameters. 

Direct Simulation Monte Carlo (DSMC) is a particle based method which is 

useful for simulating gas dynamics in rarefied and/or highly non-equilibrium flowfields.  

A DSMC code was written and optimized for use in this research.  The code was 

developed with shock tube simulations in mind, and it includes a number of 

improvements which allow for the efficient simulation of 1D, hypersonic shocks.  Most 

importantly, a moving sampling region is used to obtain an accurate steady shock profile 

from an unsteady, moving shock wave.  The code is MPI parallel and an adaptive load 

balancing scheme ensures that the workload is distributed properly between processors 

over the course of a simulation. 

Global, Monte Carlo based sensitivity analyses were performed in order to 

determine which of the parameters examined in this work most strongly affect the 

simulation results for two scenarios: a 0D relaxation from an initial high temperature 
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state and a hypersonic shock.  The 0D relaxation scenario was included in order to 

examine whether, with appropriate initial conditions, it can be viewed in some regards as 

a substitute for the 1D shock in a statistical sensitivity analysis.  In both analyses 

sensitivities were calculated based on both the square of the Pearson correlation 

coefficient and the mutual information.  The quantity of interest (QoI) chosen for these 

analyses was the NO density profile.  This vector QoI was broken into a set of scalar 

QoIs, each representing the density of NO at a specific point in time (for the relaxation) 

or a specific streamwise location (for the shock), and sensitivities were calculated for 

each scalar QoI based on both measures of sensitivity.  The sensitivities were then 

integrated over the set of scalar QoIs to determine an overall sensitivity for each 

parameter.  A weighting function was used in the integration in order to emphasize 

sensitivities in the region of greatest thermal and chemical non-equilibrium.  The six 

parameters which most strongly affect the NO density profile were found to be the same 

for both scenarios, which provides justification for the claim that a 0D relaxation can in 

some situations be used as a substitute model for a hypersonic shock.  These six 

parameters are the pre-exponential constants in the Arrhenius rate equations for the N2 

dissociation reaction N2 + N ᵮ 3N, the O2 dissociation reaction O2 + O ᵮ 3O, the NO 

dissociation reactions NO + N ᵮ 2N + O and NO + O ᵮ N + 2O, and the exchange 

reactions N2 + O ᵮ NO + N and NO + O ᵮ O2 + N. 

After identification of the most sensitive parameters, a synthetic data calibration 

was performed to demonstrate that the statistical inverse problem could be solved for the 

0D relaxation scenario.  The calibration was performed using the QUESO code, 

developed at the PECOS center at UT Austin, which employs the Delayed Rejection 

Adaptive Metropolis (DRAM) algorithm.  The six parameters identified by the sensitivity 

analysis were calibrated successfully with respect to a group of synthetic datasets. 
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Chapter 1:  Introduction  

MOTIVATION  

Direct Simulation Monte Carlo (DSMC) is a particle based method which is often 

used for the simulation of rarefied and/or highly non-equilibrium gas flows where it is 

important to account for non-continuum aspects of the gas dynamics.  DSMC has been 

continuously developed and improved by many researchers over the course of several 

decades, but little or no prior work has been done which integrates DSMC with statistical 

analysis methods for the purposes of sensitivity analysis or parameter calibration. 

The DSMC method includes many parameters related to gas dynamics at the 

molecular level.  Examples include parameters related to elastic collision cross-sections, 

rotational and vibrational excitation and relaxation, reaction cross-sections, etc.  The 

precise values of some of these parameters are not known and parameter values often 

cannot be directly measured.  Instead, they must be inferred from experimental results, 

and by necessity parameters must often be used in regimes far from where their values 

were calibrated.  More precisely calibrated values for some of these important parameters 

could lead to better simulation of the physics, and thus to better predictive capability for 

DSMC.  Furthermore, having post-calibration parameter PDFs which incorporate the 

uncertainty of the experimental data used in the calibrations would assist greatly in 

quantifying the uncertainty which is present in predictions made with DSMC.  Finally, 

identifying the set of parameters which most strongly influence the simulation results for 

a given scenario will allow experimental and other computational efforts to focus on 

lowering the uncertainty present in those parameters which most strongly affect a 

particular quantity of interest (QoI). 
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OBJECTIVES 

The current work focuses on sensitivity analysis and synthetic data calibration.  It 

is intended to lay the groundwork for future calibration based on experimental data, 

which is the long-term goal of the project. 

In approaching that goal, the first step is to write and test a DSMC code which is 

capable of seamless integration with the statistical methods we wish to employ, and 

which is computationally efficient enough to allow us to perform very large numbers of 

simulations within a reasonable timeframe.  This code must also be able to correctly 

model the relevant physics for a hypersonic shock, which is the primary scenario we have 

chosen to examine in this work. 

After the DSMC code is in place, the next step is a sensitivity analysis to 

determine which parameters most strongly affect the results of DSMC simulations of 

hypersonic shocks.  A global sensitivity analysis is needed due to the relatively large 

number of parameters, the large uncertainties associated with them, and the highly 

coupled nature of the physical problem.  In this work, we will establish a set of codes 

which allow us to employ global, Monte Carlo based methods to determine the 

sensitivities for a variety of parameters.  We will examine two selected scenarios which 

are suitable for simulation with DSMC.  The first of these is a 0D relaxation from an 

initial high temperature state and the second is a 1D, hypersonic shock.  The 0D 

relaxation scenario is included in order to test the hypothesis that in some situations this 

scenario can serve as a substitute (for the purposes of sensitivity analysis) for the much 

more computationally expensive 1D shock scenario.  We will identify a broad set of 

parameters relevant to modeling each of these scenarios with DSMC, and we will then 

determine which of these parameters most strongly affect the simulation results for a 

chosen QoI. 
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Once the sensitivity analysis is completed, the final step is to perform synthetic 

data calibrations in order to demonstrate that the statistical inverse problem can be 

solved, and thus that we can hope to eventually perform calibrations with real data.  The 

machinery put in place in this work will set the stage for subsequent calibrations with 

experimental data as a part of the ongoing project. 

 

L ITERATURE REVIEW  

In this literature review we will cover the three main subject areas of this work.  

The first section will deal with DSMC, the second with global sensitivity analysis 

methods, and the third with the solution of the inverse problem via the MCMC algorithm. 

 

DSMC 

We first address DSMC, the numerical technique used for all of the simulations in 

this work.  DSMC is a stochastic, particle based method for simulating gas dynamics in 

which simulated particles represent large numbers of real particles.  These simulated 

particles move and interact with one another, and the interactions between particles (such 

as elastic or inelastic collisions and chemical reactions) are handled statistically.  DSMC 

is more computationally expensive than most CFD codes, but it is often the only realistic 

option for the simulation of rarefied flows which occur in a diverse set of fields.  In this 

work, our choice to use DSMC is driven by the fact that it is well-suited for the accurate 

simulation of highly non-equilibrium regions of a flowfield (such as strong shock waves), 

and it can model thermochemistry on a more detailed level than most CFD codes. 
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DSMC has been around for decades and has been used for the simulation of a 

wide variety of physical problems, from space shuttle re-entry to MEMS devices to 

planetary atmospheres.  In this section we will focus on aspects of the method which 

might pertain to the simulation of hypersonic shocks.  The textbook written by Bird 

(1994), who is considered the inventor of DSMC, provides a valuable source which will 

be referred to throughout this section. 

 

Collision Model 

Bird (1994) provides an overview of the set of elastic collision models which are 

often employed in DSMC simulations.  Prior to the 1980ôs the hard-sphere collision 

model was used for most DSMC simulations.  While results obtained with the hard-

sphere model are not grossly inaccurate, the model does not allow the collision cross-

section to depend on the relative velocity between the colliding particles, which is a 

major drawback.  Bird (1981) proposed the variable hard-sphere (VHS) collision model.  

The VHS model contains a second parameter which allows the collision cross-section to 

be dependent on the relative velocity, which then allows for a more accurate scaling of 

viscosity with temperature.  A further modification by Koura and Matsumoto (1992), 

known as the variable soft sphere (VSS) model added a third parameter which affects the 

scattering angle for the post-collision particle velocities, and adding this third parameter 

allows DSMC to properly match both the viscosity-temperature relationship and also the 

relationship between the diffusion coefficients and the temperature.  More complex 

collision models have also been proposed, such as the generalized hard sphere (GHS) 

model of Hassan and Hash (1993) which allows the parameters of a Lennard-Jones 

potential to be used in the DSMC collision model. 
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The models used for inelastic collisions have also changed over the years.  The 

very earliest DSMC simulations could only handle monatomic gases.  Bird (1994) 

described what he refers to as the Larsen-Borgnakke model (Borgnakke and Larsen, 

1975), which can be incorporated into DSMC in order to allow the simulation of species 

with internal energy modes.  The model is phenomenological in nature, and allows 

energy to be redistributed between the translational and internal modes during some 

portion of the DSMC collisions.  Models based on the work of Borgnakke and Larsen 

were included in DSMC codes by both Bergemann and Boyd (1994) and Haas et al. 

(1994).  In recent years some DSMC codes have begun using a state-to-state model for 

vibrational collisions.  In a state-to-state model, such as that of Boyd and Josyula (2011), 

individual cross-sections are used for each possible vibrational transition which might 

occur during a collision between a given pair of species.  These cross-sections may be a 

function of the relative velocity between the particles and also of the current internal 

energy state of both particles. 

 

Chemistry Model 

Bird (1994) described several possible chemistry models, including the commonly 

used total collision energy (TCE) model.  The TCE model calculates a reaction-cross 

section based on the total energy (translational and internal) available in a collision.  The 

parameters for an Arrhenius reaction rate equation are included in the equation for the 

reaction cross-section, allowing DSMC reaction rates to be set to match Arrhenius rates.  

Improvements have been incorporated into TCE in order to more properly address the 

dependence of dissociation reaction rates on the vibrational level of the dissociating 
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species.  The improved model was devised by Haas and Boyd (1993) and is known as 

vibrationally-favored dissociation (VFD). 

More advanced chemistry implementations are also possible, including ones 

which are based on tabulated reaction cross-sections over a range of collision parameters.  

An example of this type of reaction model is included in the work of Moore et al. (2011). 

 

Shock Simulations 

DSMC has been used a number of times in the past to simulate shock waves.  In a 

well-known work by Pham-Van-Diep et al. (1989), the molecular velocity distribution 

function from a DSMC simulation of a hypersonic shock was compared to an 

experimentally measured molecular velocity distribution function.  The bimodal velocity 

distribution function observed in the shock had been predicted theoretically, but it had 

never before been observed experimentally.  The qualitative and quantitative agreement 

between the experimental and DSMC simulated distribution functions which was 

described in Erwin et al. (1991) is considered an important validation of the DSMC 

method. 

DSMC has been used to simulate hypersonic shocks in more recent work as well, 

such as that of Watvisave et al. (2011) which examined the effect of a growing boundary 

layer on the propagation of a shock wave in pure nitrogen in a shock-tube.  Another 

recent example of the use of DSMC for hypersonic shock simulations can be found in the 

work of Farbar and Boyd (2011), where a hybrid DSMC/PIC code was employed to 

model a very high temperature shock layer plasma, such as that which would be found in 

the bow shock region of a re-entry vehicle on a lunar or Mars return trajectory. 
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Sensitivity Analysis for DSMC Simulations 

Sensitivity analyses have been performed with DSMC codes a number of times in 

the past, but they have been confined to a very small number of parameters (often just 

one or two) and they have been local in nature.  For example, Valentini and 

Schwartzentruber (2009) examined the sensitivity of an argon shock profile to one of the 

VHS collision parameters (the temperature-viscosity exponent, ɤ).  Only this one 

parameter was varied, and it was varied only in a small region near its nominal value. 

 

Calibration of DSMC Parameters 

Recent work by Stephani, Goldstein, and Varghese (2012) focused on the 

calibration of DSMC collision parameters.  The calibrations were done with the Nelder-

Mead method.  The aim in that work was to calibrate the DSMC parameters not against 

experiments, but rather against a different set of parameters related to the calculation of 

transport coefficients in a CFD model.  This was done so as to enable the transport 

coefficients to be matched across a hybrid boundary between DSMC and CFD codes. 

 

Global Sensitivity Analysis 

The purpose of the sensitivity analyses presented in this work is to determine 

which parameters most strongly affect the simulation results for a given scenario and 

QoI.  Later, when we perform synthetic data calibrations, we will choose which 

parameters to calibrate based on the results of our sensitivity analyses.   

In this work we use a global sensitivity analysis methodology.  In a global 

sensitivity analysis all of the parameters are varied simultaneously, and our global 

sensitivity analysis technique requires a Monte Carlo sampling of the parameter space. 
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Before sampling the parameter space, each parameter is assigned a distribution, 

called the prior, which reflects the level of uncertainty for that parameter (based on 

literature values and expert judgment).  During the sensitivity analysis the parameters 

take on values drawn from their priors, rather than in a small region about their nominal 

values.  For each sample from the parameter space, a set of random number draws is 

performed to determine the values of all of the parameters.  A simulation is then run with 

this set of parameter values, and the results for the QoI are output.  Once a reasonable 

number of sample points have been completed, the results of this sampling can be 

projected onto a two-dimensional space to generate scatterplots of the values of a given 

parameter vs. the values of a QoI, and these scatterplots can be used to examine the 

relationship between each parameter and the QoI.  For a much more detailed discussion 

of the sampling of a parameter space during a global, Monte Carlo sensitivity analysis, 

see Chapter 3 of this dissertation. 

In this section we will cover the two measures of sensitivity which we will use 

during our sensitivity analyses later in this work.  Both of these measures are calculated 

based on the information contained in the scatterplots described above.  The first of these 

measures is the square of the Pearson correlation coefficient (referred to as r
2
) and the 

second is the mutual information. 

 

Sensitivities Based on r
2
 

The Pearson correlation coefficient is a very common statistical measure and can 

be found in any basic statistics textbook, so we will not discuss the measure itself in this 

section.  The theory behind the use of r
2
 as a measure of sensitivity is discussed in great 

detail in Chapter 3 of this dissertation.  We will focus here on the use of r
2
 as a measure 
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of sensitivity in past works involving global sensitivity analyses related to hypersonic 

flows. 

Global sensitivity analyses have been performed for problems similar to what we 

are examining in this work, but they have been done with hypersonic CFD codes rather 

than with particle based methods.  Bose, Wright, and Gökçen (2004) performed a global 

uncertainty and sensitivity analysis for the thermochemical modeling of a Titan 

atmospheric entry.  Their analysis was based on a Monte Carlo sampling of several 

hundred parameters, such as reaction rate constants, parameters related to vibrational 

relaxation and vibration-chemistry coupling, and transport properties.  They used the 

square of the Pearson correlation coefficient as their measure for sensitivity.  Their work 

examined scalar quantities of interest such as the vehicle heating, and they were able to 

identify the parameters whose uncertainties contributed most to the overall uncertainty in 

the vehicle heating rate.  Similar follow-on work was done by Bose and Wright (2006) 

for Mars entries.  In that work, the QoI was the laminar, convective heating at the vehicle 

surface, and a total of 130 parameters were examined, including collision integrals and 

reaction rates.  The parameter space was split into four domains, with each domain 

corresponding to a particular wall-catalysis regime.  Four separate analyses were actually 

conducted, one for each domain, and the parameters which contributed the most to the 

overall uncertainty of the QoI were identified for each domain. 

Miki et al. (2010) performed a global, Monte Carlo based sensitivity analysis for 

a hypersonic CFD simulation of a 1D shock.  The parameters included chemical reaction 

rates, ionization rates, and parameters related to vibrational and electronic excitation.  

That work also used the square of the Pearson correlation coefficient as the measure for 

sensitivity.  That project is ongoing, and subsequent work done by Miki et al. (2011) and 

Panesi et al. (2011) examined sensitivities for additional parameters. 
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The Mutual Information 

The mutual information has not previously been used for a sensitivity analysis 

related to hypersonic flows, at least in published work.  In this section we will primarily 

discuss the various works which have informed our current technique for calculating the 

mutual information based on a dataset from a Monte Carlo sampling of a parameter 

space.  An in-depth discussion of the theory behind the use of the mutual information as a 

measure of sensitivity can be found in Chapter 3 of this dissertation. 

The concept of the mutual information was first introduced by Shannon (1948), 

and the textbook by Cover and Thomas (1991) provides a great deal of background 

information on the subject.  The work of Steuer et al. (2002) gives a comprehensive 

overview of the mutual information and some methods for estimating it based on a 

sampling of the parameter space.  The specific results presented in that work are from the 

field of bioinformatics and involve the analysis of co-expressed genes, but the description 

of the methods used to estimate the mutual information is straightforward and useful.  

The mutual information is first defined and described briefly, and then two methods are 

given for estimating the mutual information from a dataset.  The first of these methods is 

based on a histogram technique, and the paper demonstrates a key drawback of this 

method, namely the potential for relatively large, spurious values of the mutual 

information when the number of histogram bins is large relative to the number of data 

points in the sample set.  The second method for calculating the mutual information is 

based on kernel density estimation (KDE) and it is shown that KDE is superior to the 

histogram based method for calculating the mutual information in practical cases where 

the number of sample points in parameter space is relatively small.  Finally, the mutual 
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information is compared with r
2
 as a measure of sensitivity for a set of gene expression 

datasets.  While describing KDE, Steuer et al. refer back to the work of Moon et al. 

(1995), where KDE is described in more mathematical detail. 

 Another technique for estimating the mutual information is known as k-nearest 

neighbor, and it is described by Kraskov et al. (2004), and yet another technique based on 

B-splines is presented in the work of Daub et al. (2004).   

 

MCMC  

Markov Chain Monte Carlo (MCMC) is a method which solves the statistical 

inverse problem in order to calibrate parameters with respect to a set of data.  During the 

calibration process, one or more chains are generated.  These chains consist of a series of 

positions in parameter space, with each position in parameter space corresponding to a set 

of parameter values.  A likelihood for any given chain position (i.e. for any given set of 

parameter values) is calculated based on the mismatch between the calibration data and 

the simulation results which are obtained when the model is run with that set of 

parameters.  Each chain begins at some initial position, and a likelihood is calculated for 

that initial chain position.  New chain positions are added by means of proposing 

candidate positions.  Candidate positions are drawn from a multi-dimensional Gaussian 

proposal distribution centered at the current chain position.  The covariance matrix of this 

Gaussian controls the average distance (in parameter space) that the chain moves in one 

step.  After a candidate position is proposed, the likelihood is calculated for the 

corresponding set of parameter values, and the candidate position is then accepted or 

rejected based on a comparison between that likelihood and the likelihood for the current 

chain position.  If the candidate position is accepted, it becomes the current chain 
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position, and thus the chain grows longer.  If the candidate position is rejected, the 

current position remains unchanged and a new candidate position is proposed.  This 

process is repeated a set number of times and/or until some specified convergence criteria 

are met.  As the chain grows it explores the parameter space, moving via a biased random 

walk towards regions of higher likelihood.  After a sufficient number of positions have 

been added to the chain, the set of accepted chain positions may be used to estimate post-

calibration PDFs for the parameters.  A thorough, step-by-step description of the MCMC 

algorithm is presented in Chapter 4 of this dissertation. 

MCMC is used for a vast array of applications in countless fields, and we will not 

attempt to cover the general MCMC literature here.  We will focus instead on two aspects 

of the literature.  We will first discuss the literature relevant to the development and 

implementation of the delayed-rejection adaptive Metropolis (DRAM) algorithm which is 

used in this work, and then we will describe recent work in which MCMC is used for the 

calibration of parameters relevant to hypersonic flows. 

 

DRAM 

The Metropolis-Hastings algorithm is the basis for most other MCMC algorithms, 

including the more advanced DRAM algorithm used in this work.   A detailed description 

of the basic Metropolis-Hastings MCMC algorithm is found in Tierney (1994), and the 

details of Metropolis-Hastings are also presented in Chapter 4.  The DRAM algorithm 

consists of two primary improvements to Metropolis-Hastings.  Both of these 

improvements are intended to allow chains to converge to the posterior (post-calibration) 

distribution with the use of fewer chain positions. 
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The first improvement is called delayed rejection, and it was developed over the 

course of several years by Tierney and Mira (1999), Green and Mira (2001), Mira (2001), 

and Mira (2002).  When delayed rejection is employed and the initial candidate position 

is rejected, rather than immediately retaining the current position and drawing a new 

candidate from the original proposal distribution, instead a candidate position is drawn 

from a separate, second stage proposal.  This second stage proposal may incorporate 

information about the rejected first stage candidate, or it may simply be a scaled version 

of the first stage proposal.  Delayed rejection can be carried out for an arbitrary number 

of steps, and the equations are set up so that the chains remain both Markovian and 

reversible. 

The second improvement is the adaptation of the proposal covariance matrix 

based on the previously accepted chain positions.  This adaptation was first employed by 

Haario et al. (1999, 2001), and the algorithm which includes this adaptation is called 

adaptive Metropolis.  When using adaptive Metropolis, the proposal covariance matrix is 

adapted at fixed intervals in order to incorporate information from the past history of the 

chain into the proposal distribution.  Adaptive Metropolis allows the proposal distribution 

to scale up or down as necessary in order to explore the parameter space better, and the 

method can also adjust to account for coupling between the parameters. 

When the two improvements described above are put together the resulting 

algorithm is known as DRAM.  This algorithm is described in detail by Haario et al. 

(2006), and also in Chapter 4 of this dissertation.  In addition to the description of the 

algorithm, Haario et al. go on to prove the ergodicity of DRAM. 
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Calibration of Parameters Relevant to Hypersonic Flows 

 At least three recent publications have centered on the use of MCMC for the 

calibration of parameters relevant to hypersonic flows.   

In Miki et al. (2012a), calibrations were performed with MCMC based on both 

synthetic data and based on data from shock tube experiments.  A number of different 

stochastic models were considered for the likelihood, including models which assume 

additive error and others which assume multiplicative error.  The likelihood models also 

differed in the way that they address potential dependencies between data points.  In two 

of the four models the data points were assumed to be independent of one another, while 

in the other two models a non-diagonal covariance matrix was used in the Gaussian 

likelihood equation in order to account for dependencies between nearby data points.  

The parameter set being calibrated included parameters related to the stochastic 

likelihood equation as well as physical parameters which are important for the shock tube 

simulations. 

In Panesi et al. (2012), parameter calibrations were performed with MCMC as 

part of a Bayesian model validation study for data reduction models used for shock tube 

experiments.  Rather than calibrating and/or validating a computational model which 

would be used to simulate the overall shock tube experiment, the purpose of this work 

was to clarify the uncertainties which are present in the experimental data as a result of 

the particular data reduction models which were used to convert the raw data (in the form 

of photon counts received by an ICCD camera) into radiative intensities.  The parameters 

of interest in the data reduction model were related to the means by which the model 

accounts for the very short gate widths of the camera. 

 In Miki et al. (2012b), the parameters of a model for atomic nitrogen ionization 

were calibrated with MCMC based on radiative intensity data from a shock tube 



 15 

experiment.  The model consisted of a one-dimensional plasma flow solver coupled with 

a radiation solver.  The posterior PDFs for the reaction rates were then compared with 

values from the literature, and the post-calibration value for the reaction rate of the 

atomic nitrogen ionization was found to be consistent with previous estimates of this rate. 

.  

MAJOR CONTRIBUTIONS OF THE CURRENT WORK  

The current work makes contributions to a number of areas of scientific interest.  

Some of these contributions are entirely new, and others involve the combination of 

techniques which have not previously been integrated with one another. 

This work includes several improvements to the modeling of hypersonic shocks 

with the DSMC method.  Most importantly, our technique allows a steady shock profile 

to be sampled from an unsteady, moving shock without the need for ensemble averaging.  

When this technique is employed, the post-shock conditions do not need to be known a 

priori , which is very valuable when simulating shocks in a chemically reacting gas where 

the post-shock conditions will not usually be known initially.  The DSMC code is MPI 

parallel, as are all of the codes used in this work, and substantial effort was put into 

proper load balancing to allow efficient scaling when simulating shocks.  Additionally, 

we describe and test a modification to the standard TCE chemistry model which allows 

for the correct simulation of reactions with rates which approach or exceed the elastic 

collision rate.  

Another significant contribution is the application of global, Monte Carlo based 

sensitivity analysis methods for the case of a stochastic simulation method such as 

DSMC.  A sensitivity analysis of this type does not appear to have been performed in the 

past for DSMC.  In the hypersonics field there has been some past work which included 
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global sensitivity analyses which are similar to those used here, as discussed in the 

preceding section.  Our work goes into more depth than those previous analyses, 

however.  In addition to making use of the mutual information as a second, more 

sophisticated measure of sensitivity, we also introduce the concept of variance-weighted 

sensitivities.  Variance weighting allows us to integrate our sensitivity profiles for a 

vector QoI in an appropriate way in order to determine overall sensitivities for each 

parameter.  Finally, we demonstrate techniques to test whether a given sensitivity 

analysis has sufficiently sampled the parameter space and also whether the simulations 

are well enough resolved to provide a converged result for the sensitivity of the 

parameters.  Having a practical way to address convergence is useful for a 

computationally expensive problem where resolving every simulation to machine 

precision and using millions of points in the sampling of the parameter space are not 

feasible options.  The stochastic nature of DSMC makes the entire process even more 

challenging.  We describe a method for including DSMC stochastic noise as a parameter 

in the sensitivity analysis, and we demonstrate that the mutual information can accurately 

measure the sensitivity of the simulation results to this noise related parameter in a way 

that r
2
 cannot. 

Finally, when performing the synthetic data calibrations we employ multiple 

scenarios and quantities of interest simultaneously in order to obtain well-characterized 

post-calibration PDFs.  The ability to make use of several types of data from multiple 

experiments simultaneously while solving the inverse problem is useful when performing 

calibrations for highly coupled sets of parameters, as we show with our synthetic data 

calibrations in this work. 

In addition to the scientific contributions of the current work, it must also be 

mentioned that a substantial codebase has been generated and tested and will continue to 
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be used both by myself in my future work and by follow-on graduate students.  Prior to 

this work, there was no existing DSMC code which would have been suitable for the 

research presented here, and having an in-house code which was developed specifically 

for the purposes of sensitivity analysis and parameter calibration will be a valuable asset 

going forward.  The sensitivity analysis codes used in this work also provide a variety of 

capabilities which were not previously available to our group, especially the ability to 

deal appropriately with a vector QoI. 

DISSERTATION LAYOUT  

Following this introductory chapter, the dissertation moves on to describe the 

numerical methods used in this work.  Chapter 2 covers the DSMC method including the 

improvements and modifications used for our shock simulations, Chapter 3 discusses our 

sensitivity analysis techniques, and Chapter 4 describes the techniques used for the 

solution of the inverse problem in order to calibrate parameters. 

After the numerical methods have been laid out, the main results from this work 

are presented.  Chapters 5 and 6 cover the sensitivity analyses for the 0D relaxation and 

the 1D shock, respectively, and Chapter 7 addresses the synthetic data calibration.  

Finally, Chapter 8 sets out the conclusions we have drawn from this work and discusses 

potential future work which might be of interest. 
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Chapter 2:  DSMC Methodology 

OVERVIEW  

The DSMC code used in this work is based on the method described by Bird 

(1994). The primary goal of the current work is to integrate DSMC with Bayesian 

statistical methods, and therefore we have chosen to employ a well-established, 

commonly understood DSMC algorithm.  In the future, the methods developed here 

could be applied to more advanced DSMC techniques such as the vibrationally favored 

dissociation model of Haas and Boyd (1993) or the sophisticated DSMC algorithm of 

Bird et al. (2009). 

In order to facilitate integration with various driver codes, the entire DSMC code 

is written as a subroutine.  It is capable of handling multiple species, each with its own 

molecular properties. Both vibrational and rotational internal energies are included, along 

with 5-species air chemistry, including dissociation, recombination, and exchange 

reactions.  It is currently set up to simulate 0-D relaxations and 1-D shocks.  The code is 

MPI parallel, and makes use of ensemble averaging (for 0-D relaxations) and adaptive 

load balancing (for 1-D shocks) to appropriately distribute work across processors. 

  

ELASTIC COLLISIONS  

Elastic collisions in the code are performed using the VHS collision model. VHS 

parameters for the 5 species used in this work are shown in Table 2.1.  In this work VHS 

parameters for cross-species collisions are usually obtained by a simple averaging of the 

parameters for the two species participating in the collision, but the code is capable of 

employing specific VHS parameters for cross-species collisions as well, if desired.  This 

feature is utilized during the sensitivity analysis for the 0-D relaxation. 
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Table 2.1: Collision parameters for 5-species air.  VHS parameters were compiled by 

Ozawa (2008).  C1 and C2 are based on those found in Bird (1994), but have 

been modified to account for the fact that Bird used different values for ɤ. 

Species  ̟
dref (×10-10 

m) 
Tref (K) C1 C2 

N2 0.65 3.11 1000 5.02 220.0 

N 0.68 3.58 1000 - - 

O2 0.65 2.96 1000 23.17 153.5 

O 0.68 3.37 1000 - - 

NO 0.65 3.41 1000 5.02 220.0 

 

INELASTIC COLLISIONS  

The Larsen-Borgnakke model (Borgnakke and Larson, 1975) is employed for the 

modeling of particles with internal degrees of freedom within the DSMC framework. 

This model is phenomenological in nature. The key aspect of the model is that some 

fraction of collisions are regarded as inelastic, and in these collisions energy may be 

redistributed between the translational and internal modes. This redistribution is carried 

out based on selections of post-collision internal energies from the equilibrium 

distributions appropriate for the given mode at the collision energy. After the internal 

energies have been assigned, the remaining energy is assigned to the relative translational 

kinetic energy of the colliding particles. For a given inelastic collision, the post-collision 

energies are chosen from a distribution based on the energy of that particular collision, 

rather than a distribution based on the overall cell properties. This allows significant 

nonequilibrium to be present between the internal and translational modes at a given 

point in the flowfield.   

In this work, rotational modes of the diatomic species are assumed to be fully 

excited. Each particle has its own value of rotational energy, and this variable is 
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continuously distributed (rotation is not considered quantized due to the close spacing of 

rotational levels). Particles have either zero rotational degrees of freedom (monatomic 

species) or two degrees of freedom (diatomic species).  The parameter relevant to 

rotational excitation and relaxation is ZR, the rotational collision number. In our code, ZR 

is defined as 1/ɚR, where ɚR is the probability of a moleculeôs rotational energy 

undergoing redistribution with the translational mode during any given collision.  During 

a collision, a separate random number draw is done for each colliding diatomic particle, 

and based on this, one, both, or neither of the particles may undergo an exchange of 

energy between the rotational and translational modes.  In the current work, we treat ZR 

as a constant (independent of collision partner and temperature) for all species with 

rotational degrees of freedom.  

Unlike rotation, vibration is not assumed to be fully excited, and vibrational levels 

are quantized. Each particle has its own vibrational level, which is associated with a 

certain vibrational energy based on the simple harmonic oscillator model.  In a given 

collision there is a separate probability ɚV for each colliding diatom, and a random 

number draw based on this probability determines whether that particle will exchange 

energy between the vibrational and translational modes.  As with rotation, ɚV = 1/ ZV, 

where ZV is the vibrational collision number.  In the work described here, ZV depends on 

collision temperature but not on collision partner, based on the expression 

 ὤ ὅ Ὕ Ὡ 
ϳ

ϳ  (2.1)  

where C1 and C2 are constants, Tcoll is the collision temperature as defined by Bird 

(1994), and ɤ is the temperature-viscosity exponent for the given species.  C1 and C2 are 

species specific, but they do not depend on the collision partner.  The values used for 

each species for C1 and C2 are obtained from Bird (1994), and are adjusted to account for 
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the fact that Birdôs values were calibrated with values of ɤ which differ from those used 

here.  C1 and C2 for the three diatomic species used in this work are listed in Table 2.1. 

 

CHEMICAL REACTIONS  

Chemical reactions in our code are handled by means of the TCE model. This 

model treats the ratio of the cross-section for a given reaction to the total collision cross-

section as a function of the total energy (translational and internal) of the two colliding 

particles. Bird (1994) lays out the process for determining the reaction cross-section as a 

function of the collision energy, and for determining the parameters of this function based 

on the parameters of an Arrhenius-type rate equation.  An Arrhenius-type rate equation 

takes the form 

 ὯὝ  ɤὝⱢὩ╔╪Ⱦ  (2.2) 

where ȿ and ɖ are reaction-specific constants, EA is the activation energy for the reaction, 

kb is the Boltzmann constant, and T is the temperature of the gas.  This form is not 

directly useful in DSMC because reactions and collisions in DSMC are handled by means 

of cross-sections, and so the Arrhenius parameters (ȿ, ɖ, and EA) must be used to obtain 

an equation for the cross-section.  Two such equations are derived in Bird (1994), one for 

exchange and dissociation (two-body) reactions, and one for recombination (three-body) 

reactions.  The equation for two-body reactions is 

 
╣►▄█

Ɫ

Ɫ Ɫ

╔╪
Ɫ

 (2.3) 

and the equation for three-body reactions is  

 
╣►▄█

Ɫ

Ɫ

Ɫ

 (2.4) 

where ůR/ůT is the ratio of the cross-section for the given reaction to the total cross-

section for interactions between the two particles.  A and B are the main reacting species 
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(not including the third-body), Ů is a symmetry factor which is equal to one if A Í B and 

two if A = B, ůref, Tref, and ɤAB are VHS parameters for collisions between species A and 

B, ‒Ӷ is the average number of internal degrees of freedom which contribute to the 

collision energy, nT is the number density of the third-body, mr is the reduced mass of 

species A and B, Ec is the total collision energy (translational plus internal), and ũ() is the 

gamma function.  The above equation for three-body reactions assumes that the 

activation energy for these reactions is zero, which is the case for all recombination 

reactions which are relevant to five-species air chemistry. 

Bird (1994) assumes that the reaction cross-section will be small relative to the 

VHS collision cross-section, which allows for the VHS collision cross-section to be 

treated as the total cross-section for use in the above equations.  The advantage of this 

assumption is that reaction cross-sections only need to be calculated after a pair has been 

accepted for collision, rather than when the pair is initially selected.  However, this 

assumption is sometimes not accurate at high collision temperatures for several of the 

reactions involved in five-species air chemistry, and it can lead to noticeable error in both 

the reaction rates and the VHS collision rates in certain cases, as will be discussed in 

detail later in this chapter.  In our work, we require the ability to vary the Arrhenius pre-

exponential constants over orders of magnitude while still retaining accurate reaction 

rates (i.e. the actual reaction rates occurring in the DSMC code must match those 

predicted by the Arrhenius rate equation for a given set of Arrhenius parameters at a 

given temperature, after sufficient averaging to minimize statistical noise).  To this end, 

we have modified the model employed by Bird (1994) so that all of the reaction cross-

sections are calculated after a pair is selected (in order to compute ůT), but before the 

collision is accepted.  With this model, ůR/ůT in the above equations is actually ůR/ůVHS, 

which is more accurate based on the derivation of the equations.  After ůR/ůVHS is 
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calculated for every potential reaction between species A and B, we can then obtain the 

total cross-section 

 „ „ ρ В „
„  (2.5) 

where NR is the number of possible reactions between species A and B.  This ůT is then 

used to determine acceptance or rejection of the given collision pair.  If the collision pair 

is accepted, a random number draw determines whether or not one of the reactions 

occurs.  The probability of a given reaction is simply the ratio ůR/ůT for that reaction, and 

the probability of a VHS collision is ůVHS/ůT.  Finally, note that inelastic (but non-

reactive) collisions are included within the VHS collision cross-section.  In principle, the 

above model could easily be applied for inelastic collisions as well, if separate cross-

sections were available for them.  In that case, ůVHS would instead be ůElastic, and ůT 

would be expanded to include the inelastic collision cross-sections.  This is not done 

because separate cross-sections are not readily available for vibrational and rotational 

transitions, so instead the Larsen-Borgnakke model is used as described previously and 

inelastic collisions are treated as a subset of VHS collisions.  This is not a problem since 

the VHS parameters (dref and ɤ) were presumably calibrated with the understanding that 

the VHS cross-section would represent both elastic and inelastic collisions. 

Arrhenius rates for the reactions important for five-species air chemistry have 

been tabulated, for example by Gupta et al. (1989).  In this work, we make use of the 

forward rates provided by Gupta et al., along with backward rates calculated based on a 

matching with the equilibrium constant over a range of temperatures.  Table 2.2 contains 

the full list of reactions used in this work, along with the nominal Arrhenius parameters 

for each reaction.   



 24 

Table 2.2: Reactions for 5-species air.  Nominal Arrhenius forward rate parameters are 

from Gupta et al. (1989), and backward rate parameters are based on a 

matching with the equilibrium constant over a range of temperatures. 

# Reaction 

Forward Rate 
Coefficients 

Backward Rate 
Coefficients qreaction 

ȿ  ́ EA ȿ  ́ EA 

1 2N2 ᵮ 2N + N2 8.0E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

2 N2 + N ᵮ 3N 6.9E-8 -1.5 1.6E-18 4.8E-46 0.27 0.0 -1.6E-18 

3 N2 + O2 ᵮ 2N + O2 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

4 N2 + O ᵮ 2N + O 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

5 N2 + NO ᵮ 2N + NO 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

6 O2 + N2 ᵮ 2O + N2 1.2E-11 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

7 O2 + N ᵮ 2O + N 6.0E-12 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

8 2O2 ᵮ 2O + O2 5.4E-11 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

9 O2 + O ᵮ 3O 1.5E-10 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

10 O2 + NO ᵮ 2O + NO 6.0E-12 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

11 NO + N2 ᵮ N + O + N2 6.6E-10 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

12 NO + N ᵮ 2N + O 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

13 NO + O2 ᵮ N + O + O2 6.6E-10 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

14 NO + O ᵮ N + 2O 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

15 2NO ᵮ N + O + NO 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

16 N2 + O ᵮ NO + N 1.1E-16 0.0 5.2E-19 2.5E-17 0.0 0.0 -5.2E-19 

17 NO + O ᵮ O2 + N 5.3E-21 1.0 2.7E-19 1.6E-18 0.5 5.0E-20 -2.7E-19 

 

1-D SHOCK SIMULATION TECHNIQUE  

Techniques for simulating 1-D, steady shocks with DSMC often require that the 

post-shock conditions be known initially.  In the case to be simulated in this work, where 

real gas effects (internal modes, chemistry, etc.) are present, the post shock conditions 

will not be exactly known a priori.  Furthermore, if a steady 1-D shock is desired, some 

form of artificial stabilization usually must be applied in order to keep the shock steady 

within the computational domain, since in a nominally-steady 1-D flow the shock may 

undergo a random walk in space.  Other techniques make use of a 2D code and the 



 25 

assumption that a 1-D profile extracted from a 2D bow shock simulation can be used as a 

substitute for a 1-D shock, but this technique leads to a good deal of wasted 

computational effort since most of the 2D flowfield is not used for the desired profile.  

Due to these concerns, we have chosen instead to simulate the development of an 

unsteady 1-D shock.  The flow in the domain is initialized with a Maxwellian velocity 

distribution at the freestream (pre-shock) temperature, with a bulk velocity moving to the 

right.  The right boundary of the domain is set as a specular wall.  The left boundary of 

the domain represents a freestream; it generates molecules entering the domain with a 

Maxwellian velocity profile (offset by the freestream velocity) at the freestream 

temperature.  We use a uniform spatial grid throughout the 1D domain.  With this initial 

setup, at the beginning of the simulation an unsteady normal shock forms and begins 

propagating to the left.  The initial setup and early shock motion are shown in Figure 2.1. 

After a substantial amount of time has passed (50% of the total number of time 

steps for the run), the shock has moved a significant distance away from the right 

boundary, and the code begins sampling the upstream (pre-shock) and downstream (post-

shock) pressures.  The sampling region for the downstream pressure is offset slightly 

from the edge of the domain on the right side so that the pressure is not altered by the 

localized effects of the wall boundary.  The sampling regions are shown in the first image 

of Figure 2.2.  The shock continues to move while this sampling takes place over the 

course of a number of time steps (10% of the total length of the run).   

After this period of sampling the upstream (pre-shock) and downstream (post-

shock) pressures are known very accurately, and at this point the code begins to track the 

shock location.  At each sample interval, the pressure is calculated at every point in the 

domain.  The pressure at any given point is calculated from the gas equation P = ɟRT, 

where R is the gas constant for the mixture, ɟ is the mass density of the mixture, and T is 
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the total temperature of the mixture.  After the pressure is calculated, a normalized 

pressure is obtained for each point based on the equation 

 ὖ  (2.6) 

where P is the pressure at a given x-location, P1 is the pre-shock pressure, and P2 is the 

post-shock pressure.  This normalized pressure is then boxcar averaged to obtain a 

smoothed value of Pnorm in each cell.  The shock location is defined as the location at 

which this boxcar averaged Pnorm is equal to 0.5, as shown in the second image of Fig. 

2.2.  Note that this location does not need to correspond to anything of particular physical 

importance in the shock profile, it is only important that the location be consistently 

defined so that it moves with a constant speed and stays fixed relative to the shock front.  

The shock location is tracked over a period of time (10% of the total length of the run) in 

order to obtain a precise shock propagation speed, as shown in the third image of Fig. 2.2. 

Once a shock propagation speed has been obtained a set of sample cells follows 

the motion of the shock, with the set of sample cells moved each time sampling is 

performed, based on the previously determined shock propagation speed.  The final 

image of Fig. 2.2 shows the sample region which propagates with the shock.  In this 

sample region, the shock can be viewed as steady. 

 

PARALLEL IMPLEMENTATION  

The DSMC code is MPI parallel.  When simulating a 0-D relaxation ensemble 

averaging allows for multiple processors to work on a single simulation; each processor 

runs its own version of the relaxation with a different random number seed and the results 

are averaged together at the end.  This is the only practical means of running a single cell 

DSMC calculation in parallel, and it is also very efficient.  When a 1-D shock is 
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simulated each processor is initially assigned a set of contiguous cells, and a given 

processor handles all movement, indexing, collisions, reactions, and any other required 

work on the particles within its set of cells.  A particle which leaves the domain of one 

processor is sent to the processor which owns the cell into which the particle has moved.  

Periodically, domain rebalancing is performed so that the work performed in a given time 

step is well balanced between all processors. 

 

 

Figure 2.1: Schematic showing the initial setup of the domain, the boundary conditions, 

and the early motion of the shock. 
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Figure 2.2: Schematic showing the pressure sampling process, the identification of the 

shock location, the calculation of the shock speed, and the location and 

motion of the shock sampling region. 
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VERIFICATION  

In order to test the modified TCE model used in this work and examine how well 

the DSMC code reproduces the VHS collision rates and the Arrhenius reaction rates, we 

ran a series of single step runs at various temperatures. For each such run, a 0-D box of 

molecules was initialized with equal number fractions of N2, N, O2, O, and NO, and a 

total number density of 1.0×10
23

 #/m
3
. The ratio of real to simulated particles was chosen 

so that there were ~5,000,000 simulated particles in the box (~1,000,000 of each species). 

The code was then run for a single time step and the number of VHS collisions and the 

number of each type of reaction were tabulated. These tabulated values were then 

ensemble averaged over a total of 320 single-step runs (each with a different random 

number seed).  Since the focus was on instantaneous rates, the reactions and collisions 

were not actually performed.  Instead the code simply identified what type of interaction 

was chosen and then left the properties of the colliding particle unchanged.  This was so 

that the properties of the gas did not change over the course of the single time step run.  

To further ensure that the rates we are examining are representative of instantaneous rates 

at the given conditions, the time step chosen was short enough that the vast majority of 

particles were not chosen for collisions or reactions at all.  Finally, because the 

recombination rates are so low, it is very difficult to get reaction rates from the DSMC 

code which are not dominated by statistical noise.  In order to examine the recombination 

rates, the entire process described above was performed a second time, after increasing 

the pre-exponential constant for the recombination rates by six-orders of magnitude.    

The Arrhenius rates are expressed as functions of a single temperature, and they 

are not very meaningful when local thermal equilibrium does not exist. Therefore, in 

these test cases all species were initialized with a given overall temperature. For the 

monatomic species this was simply the translational temperature, but for the diatomic 
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species the distribution of internal states was initialized to an equilibrium at the given 

temperature (i.e. Trot = Tvib = Ttrans = Tov). The TCE model does not require thermal 

equilibrium, it is only necessary in order for comparison with Arrhenius reaction rates to 

be meaningful. The above process was performed at a total of 64 temperatures between 

5000 K and 25000 K, and in Figure 2.3 the results from the DSMC code are compared 

with VHS collision rates based on kinetic theory and reaction rates based on the 

Arrhenius rate equations.  For clarity of the images, collision rates are only shown for 

some of the species combinations, and reaction rates are only shown for some of the 

reactions.  The VHS collision rates, dissociation reaction rates, and exchange reaction 

rates all come from the case with nominal recombination rate parameters.  As mentioned 

above, in order to get results which are not dominated by noise the recombination rate 

comparison is performed with much larger pre-exponential constants for all the 

recombination reactions (the predicted Arrhenius recombination rates are also calculated 

with this higher pre-exponential constant, so the comparison between DSMC and 

predicted rates is still valid).  Note the extremely good agreement between the predicted 

and actual rates for both VHS collisions and chemical reactions.  Those rates not shown 

have also been examined, and show similarly excellent agreement. 

 

PROOF OF NECESSITY OF THE TCE MODIFICATION  

The modified TCE model used in this work does incur some additional 

computational expense.  How large of an additional expense depends on the ratio of 

selections to VHS collisions, since the modification consists of performing the 

calculation of ůR/ůVHS whenever a pair of particles is selected, rather than only if the pair 

is chosen for a VHS collision.  In the work presented here, the computational expense of 
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each simulation was increased by slightly less than a factor of two when using the 

modified model as compared to when using traditional TCE.  Due to this additional 

computational expense, it is important to justify the use of the modified model. 

 

 

Figure 2.3.   Instantaneous rates for VHS collisions and for selected reactions over a 

range of temperatures. Number densities of N2, N, O2, O, and NO were all 

set at 2.0×10
22

 #/m
3
.  The temperatures shown are total temperatures, and 

the diatomic species were initialized with their rotational and vibrational 

modes in equilibrium with the translational mode.  Note the excellent 

agreement at all temperatures. 
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While the traditional TCE model does fine with the nominal reaction rates, 

reaction rates in this work are varied over a range of two orders of magnitude and in 

some regions of the parameter space the majority of the reaction rates will be much 

higher than the nominal values.  Our code must be able to give accurate results even in 

those cases, which means that the Arrhenius rates must be reproduced even when the 

reaction rates are substantially higher than the VHS collision rates.  In order to test the 

modified TCE model against traditional TCE, we performed another set of simulations 

similar to that described above, this time with ȿ for every reaction set ten times higher 

than the nominal value.  A set of 64 temperatures was run with the modified TCE model 

and another set was run with traditional TCE.  The results for the two procedures are 

shown in Figure 2.4.  It is very clear from the figure that if we want to accurately model 

the higher reaction rates we must use the modified model.  Errors of greater than a factor 

of three are present at higher temperatures when using the traditional TCE model.  This is 

not surprising, since the rates for these reactions are higher than the VHS collision rates 

between the reactant species.  It is simply not possible for the traditional model to get the 

rates right, since with that model reactions are a subset of VHS collisions and there are 

not enough VHS collisions to go around.  Furthermore, in the case of O2 + N Ÿ NO + O 

this is not even the only reaction between these reactants; a dissociation reaction is also 

possible and occurs at a high rate.  The reaction N2 + N Ÿ 3N is the only reaction 

between these reactants and thus the error for this reaction, while still nearly a factor of 

two, is less than the error for O2 + N Ÿ NO + O. 
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Figure 2.4. Instantaneous rates for selected reactions over a range of temperatures.  

Initial conditions are the same as in Fig. 2.3, but ȿ for every reaction is ten 

times higher than the nominal value.  At higher temperatures, the Arrhenius 

rates for the reactions shown are higher than the VHS rate for collisions 

between the reactants.  The modified TCE model used in this work matches 

the Arrhenius rates in spite of this, but the traditional TCE model (which 

assumes that ůVHS can be used to approximate ůTotal) is not able to match the 

Arrhenius rates in this situation. 

In order to further demonstrate the need for the modified TCE model in this work, 

we also ran two shock simulations (with the same initial conditions as the shocks for the 

sensitivity analysis which will be described in Chapter 6), and in both of these 

simulations ȿ for every reaction was ten times higher than the nominal value (this 

represents the extreme corner of the parameter space which will be examined in the 

sensitivity analysis).  We used the modified TCE model in one of these simulations and 

traditional TCE in the other, and the results for ɟNO (which will be our main quantity of 
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interest in the sensitivity analysis for the 1-D shock) are shown in Figure 2.5.  There are 

very substantial differences in the two profiles in the non-equilibrium region of interest, 

and thus we again conclude that we must use the modified TCE model in this work. 

 

Figure 2.5. Profiles of ɟNO inside a shock at ~8000 m/s.  Note that the profiles differ 

significantly depending on whether traditional or modified TCE is used.  For 

these runs, ȿ for every reaction is ten times higher than the nominal value. 
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Chapter 3:  Sensitivity Analysis Methodology 

OVERVIEW  

We will use two sensitivity analysis methods in this work, one based on the 

square of the Pearson correlation coefficient (r
2
) and the second based on the mutual 

information.  Both of these methods are global in nature and require a Monte Carlo 

sampling of the parameter space.  This sampling can be quite time consuming, but 

fortunately we can use the same data set for both methods. 

Once the sampling of the parameter space is complete, we calculate r
2
 and the 

mutual information for each parameter.  In cases where the QoI is a vector (i.e. we have 

values for the QoI at a set of discrete points in space or time) we treat each component of 

the vector as a distinct, scalar QoI, and we calculate r
2
 and the mutual information for 

each of these scalar QoIs.  We can then plot sensitivities as a function of x (or time, as 

appropriate). 

 

SAMPLING THE PARAMETER SPACE 

The type of global sensitivity analysis described here is distinguished from a local 

sensitivity analysis in several ways.  First, in a global analysis all of the parameters are 

varied simultaneously while in a local analysis the parameters are usually varied one at a 

time.  Second, the global analysis allows the parameters to vary over the entire parameter 

space, as opposed to only in a small range around their nominal values as is usually the 

case with a local analysis.  Furthermore, local analyses are usually based on calculating 

partial derivatives of the QoI with respect to each parameter, while no derivatives are 

calculated in the global analysis presented here.  Instead, the global sensitivity analysis is 

used to estimate the relative contribution of the uncertainty of each parameter to the 

overall uncertainty of the QoI. 
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There are a number of methods for performing a global sensitivity analysis.  

Many of the most advanced methods are intrusive, meaning that they require changes to 

the algorithm and/or equations used to simulated the physics.  Others require the creation 

of a surrogate model to be used in place of the actual model during the sensitivity 

analysis.  Due to the fact that DSMC simulations do not directly involve the solution of a 

set of differential equations, common intrusive methods which are based on rewriting 

differential equations are not practical.  Creating a surrogate model is also a challenge 

and proper creation of a surrogate model is a field of study in and of itself.  Due to these 

limitations, for this work we have chosen a Monte Carlo based approach which is non-

intrusive and which does not require the creation of a surrogate model.  This choice is 

also informed by the goal of making the techniques used here suitable for immediate 

application by the DSMC and rarefied gas dynamics communities, and a somewhat 

simpler, easier-to-understand method which does not require great knowledge of abstract 

mathematics is more likely to be used in the near future by those communities.   

The Monte Carlo method requires a sampling of the parameter space, and the 

dataset created by this sampling provides the input for the sensitivity analysis techniques.  

The sampling of the parameter space proceeds as follows: 

1.) Boundaries are established for each parameter.  In Bayesian terms, this 

means that we establish prior distributions for all of the parameters.  These priors are 

based on a combination of hard physical limits when those are present for a given 

parameter within a given model, review of the available literature, and expert judgment.  

For example in the VHS model a value for ɤ which is less than 0.5 or greater than 1 

would be physically incorrect.  The priors are intended to incorporate estimates of the 

uncertainty in these parameters, so that parameters whose values are considered better 
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known should be bounded more tightly than parameters whose true values are more 

uncertain. 

 In principle, these prior distributions could be uniform, Gaussian, or any other 

appropriate distribution.  Using a Gaussian prior (presumably centered at the nominal 

value of the parameter from expert judgment or the literature) implies some degree of 

confidence in that nominal value, with the level of confidence depending on the width of 

the Gaussian used.  In our case, we have very little confidence in the nominal values for 

many of our parameters, and the nominal value often depends on what particular prior 

work is referenced.  Therefore, in this work we will use the least informative possible 

prior, a uniform distribution over a broad range for each parameter.  The size of the range 

will be set for any given parameter based on an estimate for the uncertainty in that 

parameter, with the goal being to err on the side of overestimating the uncertainty rather 

than underestimating it.   

2.) A value for each parameter is selected based on a random number draw from the 

prior distribution for that parameter.  This process is performed individually for each 

parameter (i.e. an independent random number is drawn for each parameter, so that the 

values of the various parameters at a sample point are independent of one another). 

3.) A simulation is run for the scenario being examined (a 0D relaxation at a given 

initial temperature, a 1D shock with a given shock velocity, etc.) with the parameter 

values selected in the previous step.  The results of this simulation are stored for later use.  

Specifically, the value of a scalar QoI or a set of values of a vector QoI are saved.  For 

the time being, it will be assumed that the QoI is scalar (i.e. the value of the QoI can be 

represented as a single number). 

4.) Steps 2 and 3 are repeated a pre-determined number of times.  Each sample is 

independent of all of the others. 
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The end result of the above process is a dataset containing the model output for 

the QoI at a set of sample points in parameter space.  Thus, for each sample point we 

have Nparameters + 1 numbers, corresponding to the values for each of the parameters and 

one value for the QoI.  This dataset can then be statistically analyzed to determine 

sensitivities (based on the given QoI) for each parameter relative to the other parameters.  

In order to calculate a sensitivity for each parameter, the full dataset is projected from its 

original Nparameters + 1 dimensional space onto the two-dimensional space defined by the 

given parameter and the QoI.  This is shown for an example QoI and an example 

parameter in Figure 3.1.  The Pearson correlation coefficient and the mutual information 

for a given parameter can then be calculated based on this two-dimensional projection of 

the full dataset.  

 

PEARSON CORRELATION COEFFICIENT  

The Pearson correlation coefficient is the first of the two statistical measures used 

in this work to quantify sensitivities for a set of parameters.  The Pearson correlation 

coefficient is given by the equation 

 ὶ
В

В В

 (3.1) 

where NMC is the number of Monte Carlo samples of the parameter space in the dataset, 

X i is the value of a given parameter at the i
th
 sample point from the dataset, and Yi is the 

value of the QoI which is output by the model (for the given scenario and with parameter 

values corresponding to the i
th
 sample point from the dataset).  We are not particularly 

interested here in whether the correlation is positive or negative, and so we will actually 

use r
2
 (the square of the Pearson correlation coefficient) as our measure of sensitivity. 
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Figure 3.1. Scatterplot showing values of a hypothetical QoI vs. values of a parameter 

ɗ1.  The dataset is obtained from a Monte Carlo sampling of the full 

parameter space (for this hypothetical example), and is projected onto the 

two-dimensional space shown. 

 The fact that scatterplots such as that shown in Figure 3.1 are projected onto a 

two-dimensional space from the full Nparameters + 1 dimensional space means that the 

variation of the QoI with respect to all of the parameters is inherently incorporated into 

the scatterplot, and it is for this reason that the r
2
 value for the scatterplot is useful as a 

measure of sensitivity for a given parameter.  If a given parameter does not have a strong 

effect on the QoI, then the r
2
 value for a scatterplot of that parameter vs. the QoI will be 

low, because the variance of the QoI will be mostly explained by other parameters.  If a 

parameter has a strong effect on the QoI, however, then a relationship will be visible in 

the scatterplot, and the corresponding r
2
 value will be relatively high.  Figure 3.2 shows a 

set of scatterplots which correspond to four different relationships between a hypothetical 

QoI and a hypothetical parameter ɗ1.  In the upper left image, there is clearly almost no 

q
1

Q
o
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relationship between the parameter and the QoI.  Virtually all of the variance of the QoI 

must be explained by other parameters which were varied in the Monte Carlo sampling of 

the parameter space.  This qualitative analysis is also borne out by a very low r
2
 value.  In 

the upper right image, it is apparent that the value of the parameter does have some effect 

on the value of the QoI, but this effect is largely washed out by the variance of the QoI 

due to all of the other parameters, resulting in a fairly low r
2
 value.   In the lower left 

image, a strong relationship between the parameter and the QoI is apparent, to the point 

that the effect of this parameter on the QoI appears to be stronger than the effect of all of 

the other parameters combined.  This is confirmed by a high r
2
 value.  Finally, in the 

lower right image, the variation of the QoI is almost completely explained by this one 

parameter, and the r
2
 value approaches the maximum possible value of 1. 

 

MUTUAL INFORMATION  

The square of the Pearson correlation coefficient has the drawback that it cannot 

accurately measure highly non-linear correlations, and we do not know a priori whether 

the correlations between our parameters and our QoI will be linear.  As an example, the 

scatterplot in Figure 3.3 shows an obvious relationship between a hypothetical parameter 

and QoI, but the value of r
2
 is nearly zero because of the clear non-linearity of the 

relationship.   

A more sophisticated measure of sensitivity can be obtained from the mutual 

information.  In the context of sensitivity analysis, the mutual information represents a 

measure of the difference between two PDFs.  One of these PDFs is the actual joint 

probability distribution for a given parameter and the QoI, and the other is a hypothetical 

joint probability distribution for a case where the QoI and the parameter are assumed to 
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be independent.  The calculation of mutual information in this work largely follows the 

procedure described in the work of Steuer et al. (2002).  The process is shown in 

schematic form in Figures 3.4 - 3.7. 

 

 

Figure 3.2. Scatterplots and corresponding r
2
 values for different hypothetical 

relationships between a QoI and a parameter ɗ1.  Scatterplots which are 

tightly packed around an obvious trendline lead to high values of r
2
, and 

indicate a strong relationship between ɗ1 and the QoI. 

The first step in the process is to normalize the data so that it has a mean of zero 

and a standard deviation of one.  This normalization process preserves any correlation 


