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Statistical Methods for the Analysis of DSMC Simulations of 

Hypersonic Shocks 

 

 

 

James Stephen Strand, Ph.D. 

The University of Texas at Austin, 2012 

 

Supervisor:  David Goldstein 

 

In this work, statistical techniques were employed to study the modeling of a 

hypersonic shock with the Direct Simulation Monte Carlo (DSMC) method, and to gain 

insight into how the model interacts with a set of physical parameters. 

Direct Simulation Monte Carlo (DSMC) is a particle based method which is 

useful for simulating gas dynamics in rarefied and/or highly non-equilibrium flowfields.  

A DSMC code was written and optimized for use in this research.  The code was 

developed with shock tube simulations in mind, and it includes a number of 

improvements which allow for the efficient simulation of 1D, hypersonic shocks.  Most 

importantly, a moving sampling region is used to obtain an accurate steady shock profile 

from an unsteady, moving shock wave.  The code is MPI parallel and an adaptive load 

balancing scheme ensures that the workload is distributed properly between processors 

over the course of a simulation. 

Global, Monte Carlo based sensitivity analyses were performed in order to 

determine which of the parameters examined in this work most strongly affect the 

simulation results for two scenarios: a 0D relaxation from an initial high temperature 
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state and a hypersonic shock.  The 0D relaxation scenario was included in order to 

examine whether, with appropriate initial conditions, it can be viewed in some regards as 

a substitute for the 1D shock in a statistical sensitivity analysis.  In both analyses 

sensitivities were calculated based on both the square of the Pearson correlation 

coefficient and the mutual information.  The quantity of interest (QoI) chosen for these 

analyses was the NO density profile.  This vector QoI was broken into a set of scalar 

QoIs, each representing the density of NO at a specific point in time (for the relaxation) 

or a specific streamwise location (for the shock), and sensitivities were calculated for 

each scalar QoI based on both measures of sensitivity.  The sensitivities were then 

integrated over the set of scalar QoIs to determine an overall sensitivity for each 

parameter.  A weighting function was used in the integration in order to emphasize 

sensitivities in the region of greatest thermal and chemical non-equilibrium.  The six 

parameters which most strongly affect the NO density profile were found to be the same 

for both scenarios, which provides justification for the claim that a 0D relaxation can in 

some situations be used as a substitute model for a hypersonic shock.  These six 

parameters are the pre-exponential constants in the Arrhenius rate equations for the N2 

dissociation reaction N2 + N ⇄ 3N, the O2 dissociation reaction O2 + O ⇄ 3O, the NO 

dissociation reactions NO + N ⇄ 2N + O and NO + O ⇄ N + 2O, and the exchange 

reactions N2 + O ⇄ NO + N and NO + O ⇄ O2 + N. 

After identification of the most sensitive parameters, a synthetic data calibration 

was performed to demonstrate that the statistical inverse problem could be solved for the 

0D relaxation scenario.  The calibration was performed using the QUESO code, 

developed at the PECOS center at UT Austin, which employs the Delayed Rejection 

Adaptive Metropolis (DRAM) algorithm.  The six parameters identified by the sensitivity 

analysis were calibrated successfully with respect to a group of synthetic datasets. 
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C1,C2 = constants in the equation for ZV as a function of collision temperature 

dref = VHS reference diameter 
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EC = total collision energy 

kb = Boltzmann constant 

k(T) = Arrhenius reaction-rate coefficient as a function of temperature 

nT = number density of the third body partner for a recombination reaction 

NMC = number of Monte Carlo samples of the parameter space 
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P1 = upstream (pre-shock) pressure 
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r
2
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σR = reaction cross-section 

σT = total cross-section 
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η = temperature exponent in the Arrhenius rate equation 

λR = rotational collision probability 

λV = vibrational collision probability 

Tref = reference temperature for the VHS model 

ZR = rotational collision number 

ZV = vibrational collision number 

mr = reduced mass 

  ̅ = average number of internal degrees of freedom which contribute to total 

energy of a collision



 1 

Chapter 1:  Introduction 

MOTIVATION 

Direct Simulation Monte Carlo (DSMC) is a particle based method which is often 

used for the simulation of rarefied and/or highly non-equilibrium gas flows where it is 

important to account for non-continuum aspects of the gas dynamics.  DSMC has been 

continuously developed and improved by many researchers over the course of several 

decades, but little or no prior work has been done which integrates DSMC with statistical 

analysis methods for the purposes of sensitivity analysis or parameter calibration. 

The DSMC method includes many parameters related to gas dynamics at the 

molecular level.  Examples include parameters related to elastic collision cross-sections, 

rotational and vibrational excitation and relaxation, reaction cross-sections, etc.  The 

precise values of some of these parameters are not known and parameter values often 

cannot be directly measured.  Instead, they must be inferred from experimental results, 

and by necessity parameters must often be used in regimes far from where their values 

were calibrated.  More precisely calibrated values for some of these important parameters 

could lead to better simulation of the physics, and thus to better predictive capability for 

DSMC.  Furthermore, having post-calibration parameter PDFs which incorporate the 

uncertainty of the experimental data used in the calibrations would assist greatly in 

quantifying the uncertainty which is present in predictions made with DSMC.  Finally, 

identifying the set of parameters which most strongly influence the simulation results for 

a given scenario will allow experimental and other computational efforts to focus on 

lowering the uncertainty present in those parameters which most strongly affect a 

particular quantity of interest (QoI). 
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OBJECTIVES 

The current work focuses on sensitivity analysis and synthetic data calibration.  It 

is intended to lay the groundwork for future calibration based on experimental data, 

which is the long-term goal of the project. 

In approaching that goal, the first step is to write and test a DSMC code which is 

capable of seamless integration with the statistical methods we wish to employ, and 

which is computationally efficient enough to allow us to perform very large numbers of 

simulations within a reasonable timeframe.  This code must also be able to correctly 

model the relevant physics for a hypersonic shock, which is the primary scenario we have 

chosen to examine in this work. 

After the DSMC code is in place, the next step is a sensitivity analysis to 

determine which parameters most strongly affect the results of DSMC simulations of 

hypersonic shocks.  A global sensitivity analysis is needed due to the relatively large 

number of parameters, the large uncertainties associated with them, and the highly 

coupled nature of the physical problem.  In this work, we will establish a set of codes 

which allow us to employ global, Monte Carlo based methods to determine the 

sensitivities for a variety of parameters.  We will examine two selected scenarios which 

are suitable for simulation with DSMC.  The first of these is a 0D relaxation from an 

initial high temperature state and the second is a 1D, hypersonic shock.  The 0D 

relaxation scenario is included in order to test the hypothesis that in some situations this 

scenario can serve as a substitute (for the purposes of sensitivity analysis) for the much 

more computationally expensive 1D shock scenario.  We will identify a broad set of 

parameters relevant to modeling each of these scenarios with DSMC, and we will then 

determine which of these parameters most strongly affect the simulation results for a 

chosen QoI. 
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Once the sensitivity analysis is completed, the final step is to perform synthetic 

data calibrations in order to demonstrate that the statistical inverse problem can be 

solved, and thus that we can hope to eventually perform calibrations with real data.  The 

machinery put in place in this work will set the stage for subsequent calibrations with 

experimental data as a part of the ongoing project. 

 

LITERATURE REVIEW 

In this literature review we will cover the three main subject areas of this work.  

The first section will deal with DSMC, the second with global sensitivity analysis 

methods, and the third with the solution of the inverse problem via the MCMC algorithm. 

 

DSMC 

We first address DSMC, the numerical technique used for all of the simulations in 

this work.  DSMC is a stochastic, particle based method for simulating gas dynamics in 

which simulated particles represent large numbers of real particles.  These simulated 

particles move and interact with one another, and the interactions between particles (such 

as elastic or inelastic collisions and chemical reactions) are handled statistically.  DSMC 

is more computationally expensive than most CFD codes, but it is often the only realistic 

option for the simulation of rarefied flows which occur in a diverse set of fields.  In this 

work, our choice to use DSMC is driven by the fact that it is well-suited for the accurate 

simulation of highly non-equilibrium regions of a flowfield (such as strong shock waves), 

and it can model thermochemistry on a more detailed level than most CFD codes. 
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DSMC has been around for decades and has been used for the simulation of a 

wide variety of physical problems, from space shuttle re-entry to MEMS devices to 

planetary atmospheres.  In this section we will focus on aspects of the method which 

might pertain to the simulation of hypersonic shocks.  The textbook written by Bird 

(1994), who is considered the inventor of DSMC, provides a valuable source which will 

be referred to throughout this section. 

 

Collision Model 

Bird (1994) provides an overview of the set of elastic collision models which are 

often employed in DSMC simulations.  Prior to the 1980’s the hard-sphere collision 

model was used for most DSMC simulations.  While results obtained with the hard-

sphere model are not grossly inaccurate, the model does not allow the collision cross-

section to depend on the relative velocity between the colliding particles, which is a 

major drawback.  Bird (1981) proposed the variable hard-sphere (VHS) collision model.  

The VHS model contains a second parameter which allows the collision cross-section to 

be dependent on the relative velocity, which then allows for a more accurate scaling of 

viscosity with temperature.  A further modification by Koura and Matsumoto (1992), 

known as the variable soft sphere (VSS) model added a third parameter which affects the 

scattering angle for the post-collision particle velocities, and adding this third parameter 

allows DSMC to properly match both the viscosity-temperature relationship and also the 

relationship between the diffusion coefficients and the temperature.  More complex 

collision models have also been proposed, such as the generalized hard sphere (GHS) 

model of Hassan and Hash (1993) which allows the parameters of a Lennard-Jones 

potential to be used in the DSMC collision model. 
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The models used for inelastic collisions have also changed over the years.  The 

very earliest DSMC simulations could only handle monatomic gases.  Bird (1994) 

described what he refers to as the Larsen-Borgnakke model (Borgnakke and Larsen, 

1975), which can be incorporated into DSMC in order to allow the simulation of species 

with internal energy modes.  The model is phenomenological in nature, and allows 

energy to be redistributed between the translational and internal modes during some 

portion of the DSMC collisions.  Models based on the work of Borgnakke and Larsen 

were included in DSMC codes by both Bergemann and Boyd (1994) and Haas et al. 

(1994).  In recent years some DSMC codes have begun using a state-to-state model for 

vibrational collisions.  In a state-to-state model, such as that of Boyd and Josyula (2011), 

individual cross-sections are used for each possible vibrational transition which might 

occur during a collision between a given pair of species.  These cross-sections may be a 

function of the relative velocity between the particles and also of the current internal 

energy state of both particles. 

 

Chemistry Model 

Bird (1994) described several possible chemistry models, including the commonly 

used total collision energy (TCE) model.  The TCE model calculates a reaction-cross 

section based on the total energy (translational and internal) available in a collision.  The 

parameters for an Arrhenius reaction rate equation are included in the equation for the 

reaction cross-section, allowing DSMC reaction rates to be set to match Arrhenius rates.  

Improvements have been incorporated into TCE in order to more properly address the 

dependence of dissociation reaction rates on the vibrational level of the dissociating 
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species.  The improved model was devised by Haas and Boyd (1993) and is known as 

vibrationally-favored dissociation (VFD). 

More advanced chemistry implementations are also possible, including ones 

which are based on tabulated reaction cross-sections over a range of collision parameters.  

An example of this type of reaction model is included in the work of Moore et al. (2011). 

 

Shock Simulations 

DSMC has been used a number of times in the past to simulate shock waves.  In a 

well-known work by Pham-Van-Diep et al. (1989), the molecular velocity distribution 

function from a DSMC simulation of a hypersonic shock was compared to an 

experimentally measured molecular velocity distribution function.  The bimodal velocity 

distribution function observed in the shock had been predicted theoretically, but it had 

never before been observed experimentally.  The qualitative and quantitative agreement 

between the experimental and DSMC simulated distribution functions which was 

described in Erwin et al. (1991) is considered an important validation of the DSMC 

method. 

DSMC has been used to simulate hypersonic shocks in more recent work as well, 

such as that of Watvisave et al. (2011) which examined the effect of a growing boundary 

layer on the propagation of a shock wave in pure nitrogen in a shock-tube.  Another 

recent example of the use of DSMC for hypersonic shock simulations can be found in the 

work of Farbar and Boyd (2011), where a hybrid DSMC/PIC code was employed to 

model a very high temperature shock layer plasma, such as that which would be found in 

the bow shock region of a re-entry vehicle on a lunar or Mars return trajectory. 
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Sensitivity Analysis for DSMC Simulations 

Sensitivity analyses have been performed with DSMC codes a number of times in 

the past, but they have been confined to a very small number of parameters (often just 

one or two) and they have been local in nature.  For example, Valentini and 

Schwartzentruber (2009) examined the sensitivity of an argon shock profile to one of the 

VHS collision parameters (the temperature-viscosity exponent, ω).  Only this one 

parameter was varied, and it was varied only in a small region near its nominal value. 

 

Calibration of DSMC Parameters 

Recent work by Stephani, Goldstein, and Varghese (2012) focused on the 

calibration of DSMC collision parameters.  The calibrations were done with the Nelder-

Mead method.  The aim in that work was to calibrate the DSMC parameters not against 

experiments, but rather against a different set of parameters related to the calculation of 

transport coefficients in a CFD model.  This was done so as to enable the transport 

coefficients to be matched across a hybrid boundary between DSMC and CFD codes. 

 

Global Sensitivity Analysis 

The purpose of the sensitivity analyses presented in this work is to determine 

which parameters most strongly affect the simulation results for a given scenario and 

QoI.  Later, when we perform synthetic data calibrations, we will choose which 

parameters to calibrate based on the results of our sensitivity analyses.   

In this work we use a global sensitivity analysis methodology.  In a global 

sensitivity analysis all of the parameters are varied simultaneously, and our global 

sensitivity analysis technique requires a Monte Carlo sampling of the parameter space. 
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Before sampling the parameter space, each parameter is assigned a distribution, 

called the prior, which reflects the level of uncertainty for that parameter (based on 

literature values and expert judgment).  During the sensitivity analysis the parameters 

take on values drawn from their priors, rather than in a small region about their nominal 

values.  For each sample from the parameter space, a set of random number draws is 

performed to determine the values of all of the parameters.  A simulation is then run with 

this set of parameter values, and the results for the QoI are output.  Once a reasonable 

number of sample points have been completed, the results of this sampling can be 

projected onto a two-dimensional space to generate scatterplots of the values of a given 

parameter vs. the values of a QoI, and these scatterplots can be used to examine the 

relationship between each parameter and the QoI.  For a much more detailed discussion 

of the sampling of a parameter space during a global, Monte Carlo sensitivity analysis, 

see Chapter 3 of this dissertation. 

In this section we will cover the two measures of sensitivity which we will use 

during our sensitivity analyses later in this work.  Both of these measures are calculated 

based on the information contained in the scatterplots described above.  The first of these 

measures is the square of the Pearson correlation coefficient (referred to as r
2
) and the 

second is the mutual information. 

 

Sensitivities Based on r
2
 

The Pearson correlation coefficient is a very common statistical measure and can 

be found in any basic statistics textbook, so we will not discuss the measure itself in this 

section.  The theory behind the use of r
2
 as a measure of sensitivity is discussed in great 

detail in Chapter 3 of this dissertation.  We will focus here on the use of r
2
 as a measure 
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of sensitivity in past works involving global sensitivity analyses related to hypersonic 

flows. 

Global sensitivity analyses have been performed for problems similar to what we 

are examining in this work, but they have been done with hypersonic CFD codes rather 

than with particle based methods.  Bose, Wright, and Gökçen (2004) performed a global 

uncertainty and sensitivity analysis for the thermochemical modeling of a Titan 

atmospheric entry.  Their analysis was based on a Monte Carlo sampling of several 

hundred parameters, such as reaction rate constants, parameters related to vibrational 

relaxation and vibration-chemistry coupling, and transport properties.  They used the 

square of the Pearson correlation coefficient as their measure for sensitivity.  Their work 

examined scalar quantities of interest such as the vehicle heating, and they were able to 

identify the parameters whose uncertainties contributed most to the overall uncertainty in 

the vehicle heating rate.  Similar follow-on work was done by Bose and Wright (2006) 

for Mars entries.  In that work, the QoI was the laminar, convective heating at the vehicle 

surface, and a total of 130 parameters were examined, including collision integrals and 

reaction rates.  The parameter space was split into four domains, with each domain 

corresponding to a particular wall-catalysis regime.  Four separate analyses were actually 

conducted, one for each domain, and the parameters which contributed the most to the 

overall uncertainty of the QoI were identified for each domain. 

Miki et al. (2010) performed a global, Monte Carlo based sensitivity analysis for 

a hypersonic CFD simulation of a 1D shock.  The parameters included chemical reaction 

rates, ionization rates, and parameters related to vibrational and electronic excitation.  

That work also used the square of the Pearson correlation coefficient as the measure for 

sensitivity.  That project is ongoing, and subsequent work done by Miki et al. (2011) and 

Panesi et al. (2011) examined sensitivities for additional parameters. 
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The Mutual Information 

The mutual information has not previously been used for a sensitivity analysis 

related to hypersonic flows, at least in published work.  In this section we will primarily 

discuss the various works which have informed our current technique for calculating the 

mutual information based on a dataset from a Monte Carlo sampling of a parameter 

space.  An in-depth discussion of the theory behind the use of the mutual information as a 

measure of sensitivity can be found in Chapter 3 of this dissertation. 

The concept of the mutual information was first introduced by Shannon (1948), 

and the textbook by Cover and Thomas (1991) provides a great deal of background 

information on the subject.  The work of Steuer et al. (2002) gives a comprehensive 

overview of the mutual information and some methods for estimating it based on a 

sampling of the parameter space.  The specific results presented in that work are from the 

field of bioinformatics and involve the analysis of co-expressed genes, but the description 

of the methods used to estimate the mutual information is straightforward and useful.  

The mutual information is first defined and described briefly, and then two methods are 

given for estimating the mutual information from a dataset.  The first of these methods is 

based on a histogram technique, and the paper demonstrates a key drawback of this 

method, namely the potential for relatively large, spurious values of the mutual 

information when the number of histogram bins is large relative to the number of data 

points in the sample set.  The second method for calculating the mutual information is 

based on kernel density estimation (KDE) and it is shown that KDE is superior to the 

histogram based method for calculating the mutual information in practical cases where 

the number of sample points in parameter space is relatively small.  Finally, the mutual 
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information is compared with r
2
 as a measure of sensitivity for a set of gene expression 

datasets.  While describing KDE, Steuer et al. refer back to the work of Moon et al. 

(1995), where KDE is described in more mathematical detail. 

 Another technique for estimating the mutual information is known as k-nearest 

neighbor, and it is described by Kraskov et al. (2004), and yet another technique based on 

B-splines is presented in the work of Daub et al. (2004).   

 

MCMC 

Markov Chain Monte Carlo (MCMC) is a method which solves the statistical 

inverse problem in order to calibrate parameters with respect to a set of data.  During the 

calibration process, one or more chains are generated.  These chains consist of a series of 

positions in parameter space, with each position in parameter space corresponding to a set 

of parameter values.  A likelihood for any given chain position (i.e. for any given set of 

parameter values) is calculated based on the mismatch between the calibration data and 

the simulation results which are obtained when the model is run with that set of 

parameters.  Each chain begins at some initial position, and a likelihood is calculated for 

that initial chain position.  New chain positions are added by means of proposing 

candidate positions.  Candidate positions are drawn from a multi-dimensional Gaussian 

proposal distribution centered at the current chain position.  The covariance matrix of this 

Gaussian controls the average distance (in parameter space) that the chain moves in one 

step.  After a candidate position is proposed, the likelihood is calculated for the 

corresponding set of parameter values, and the candidate position is then accepted or 

rejected based on a comparison between that likelihood and the likelihood for the current 

chain position.  If the candidate position is accepted, it becomes the current chain 
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position, and thus the chain grows longer.  If the candidate position is rejected, the 

current position remains unchanged and a new candidate position is proposed.  This 

process is repeated a set number of times and/or until some specified convergence criteria 

are met.  As the chain grows it explores the parameter space, moving via a biased random 

walk towards regions of higher likelihood.  After a sufficient number of positions have 

been added to the chain, the set of accepted chain positions may be used to estimate post-

calibration PDFs for the parameters.  A thorough, step-by-step description of the MCMC 

algorithm is presented in Chapter 4 of this dissertation. 

MCMC is used for a vast array of applications in countless fields, and we will not 

attempt to cover the general MCMC literature here.  We will focus instead on two aspects 

of the literature.  We will first discuss the literature relevant to the development and 

implementation of the delayed-rejection adaptive Metropolis (DRAM) algorithm which is 

used in this work, and then we will describe recent work in which MCMC is used for the 

calibration of parameters relevant to hypersonic flows. 

 

DRAM 

The Metropolis-Hastings algorithm is the basis for most other MCMC algorithms, 

including the more advanced DRAM algorithm used in this work.   A detailed description 

of the basic Metropolis-Hastings MCMC algorithm is found in Tierney (1994), and the 

details of Metropolis-Hastings are also presented in Chapter 4.  The DRAM algorithm 

consists of two primary improvements to Metropolis-Hastings.  Both of these 

improvements are intended to allow chains to converge to the posterior (post-calibration) 

distribution with the use of fewer chain positions. 
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The first improvement is called delayed rejection, and it was developed over the 

course of several years by Tierney and Mira (1999), Green and Mira (2001), Mira (2001), 

and Mira (2002).  When delayed rejection is employed and the initial candidate position 

is rejected, rather than immediately retaining the current position and drawing a new 

candidate from the original proposal distribution, instead a candidate position is drawn 

from a separate, second stage proposal.  This second stage proposal may incorporate 

information about the rejected first stage candidate, or it may simply be a scaled version 

of the first stage proposal.  Delayed rejection can be carried out for an arbitrary number 

of steps, and the equations are set up so that the chains remain both Markovian and 

reversible. 

The second improvement is the adaptation of the proposal covariance matrix 

based on the previously accepted chain positions.  This adaptation was first employed by 

Haario et al. (1999, 2001), and the algorithm which includes this adaptation is called 

adaptive Metropolis.  When using adaptive Metropolis, the proposal covariance matrix is 

adapted at fixed intervals in order to incorporate information from the past history of the 

chain into the proposal distribution.  Adaptive Metropolis allows the proposal distribution 

to scale up or down as necessary in order to explore the parameter space better, and the 

method can also adjust to account for coupling between the parameters. 

When the two improvements described above are put together the resulting 

algorithm is known as DRAM.  This algorithm is described in detail by Haario et al. 

(2006), and also in Chapter 4 of this dissertation.  In addition to the description of the 

algorithm, Haario et al. go on to prove the ergodicity of DRAM. 

 



 14 

Calibration of Parameters Relevant to Hypersonic Flows 

 At least three recent publications have centered on the use of MCMC for the 

calibration of parameters relevant to hypersonic flows.   

In Miki et al. (2012a), calibrations were performed with MCMC based on both 

synthetic data and based on data from shock tube experiments.  A number of different 

stochastic models were considered for the likelihood, including models which assume 

additive error and others which assume multiplicative error.  The likelihood models also 

differed in the way that they address potential dependencies between data points.  In two 

of the four models the data points were assumed to be independent of one another, while 

in the other two models a non-diagonal covariance matrix was used in the Gaussian 

likelihood equation in order to account for dependencies between nearby data points.  

The parameter set being calibrated included parameters related to the stochastic 

likelihood equation as well as physical parameters which are important for the shock tube 

simulations. 

In Panesi et al. (2012), parameter calibrations were performed with MCMC as 

part of a Bayesian model validation study for data reduction models used for shock tube 

experiments.  Rather than calibrating and/or validating a computational model which 

would be used to simulate the overall shock tube experiment, the purpose of this work 

was to clarify the uncertainties which are present in the experimental data as a result of 

the particular data reduction models which were used to convert the raw data (in the form 

of photon counts received by an ICCD camera) into radiative intensities.  The parameters 

of interest in the data reduction model were related to the means by which the model 

accounts for the very short gate widths of the camera. 

 In Miki et al. (2012b), the parameters of a model for atomic nitrogen ionization 

were calibrated with MCMC based on radiative intensity data from a shock tube 
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experiment.  The model consisted of a one-dimensional plasma flow solver coupled with 

a radiation solver.  The posterior PDFs for the reaction rates were then compared with 

values from the literature, and the post-calibration value for the reaction rate of the 

atomic nitrogen ionization was found to be consistent with previous estimates of this rate. 

.  

MAJOR CONTRIBUTIONS OF THE CURRENT WORK 

The current work makes contributions to a number of areas of scientific interest.  

Some of these contributions are entirely new, and others involve the combination of 

techniques which have not previously been integrated with one another. 

This work includes several improvements to the modeling of hypersonic shocks 

with the DSMC method.  Most importantly, our technique allows a steady shock profile 

to be sampled from an unsteady, moving shock without the need for ensemble averaging.  

When this technique is employed, the post-shock conditions do not need to be known a 

priori, which is very valuable when simulating shocks in a chemically reacting gas where 

the post-shock conditions will not usually be known initially.  The DSMC code is MPI 

parallel, as are all of the codes used in this work, and substantial effort was put into 

proper load balancing to allow efficient scaling when simulating shocks.  Additionally, 

we describe and test a modification to the standard TCE chemistry model which allows 

for the correct simulation of reactions with rates which approach or exceed the elastic 

collision rate.  

Another significant contribution is the application of global, Monte Carlo based 

sensitivity analysis methods for the case of a stochastic simulation method such as 

DSMC.  A sensitivity analysis of this type does not appear to have been performed in the 

past for DSMC.  In the hypersonics field there has been some past work which included 
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global sensitivity analyses which are similar to those used here, as discussed in the 

preceding section.  Our work goes into more depth than those previous analyses, 

however.  In addition to making use of the mutual information as a second, more 

sophisticated measure of sensitivity, we also introduce the concept of variance-weighted 

sensitivities.  Variance weighting allows us to integrate our sensitivity profiles for a 

vector QoI in an appropriate way in order to determine overall sensitivities for each 

parameter.  Finally, we demonstrate techniques to test whether a given sensitivity 

analysis has sufficiently sampled the parameter space and also whether the simulations 

are well enough resolved to provide a converged result for the sensitivity of the 

parameters.  Having a practical way to address convergence is useful for a 

computationally expensive problem where resolving every simulation to machine 

precision and using millions of points in the sampling of the parameter space are not 

feasible options.  The stochastic nature of DSMC makes the entire process even more 

challenging.  We describe a method for including DSMC stochastic noise as a parameter 

in the sensitivity analysis, and we demonstrate that the mutual information can accurately 

measure the sensitivity of the simulation results to this noise related parameter in a way 

that r
2
 cannot. 

Finally, when performing the synthetic data calibrations we employ multiple 

scenarios and quantities of interest simultaneously in order to obtain well-characterized 

post-calibration PDFs.  The ability to make use of several types of data from multiple 

experiments simultaneously while solving the inverse problem is useful when performing 

calibrations for highly coupled sets of parameters, as we show with our synthetic data 

calibrations in this work. 

In addition to the scientific contributions of the current work, it must also be 

mentioned that a substantial codebase has been generated and tested and will continue to 
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be used both by myself in my future work and by follow-on graduate students.  Prior to 

this work, there was no existing DSMC code which would have been suitable for the 

research presented here, and having an in-house code which was developed specifically 

for the purposes of sensitivity analysis and parameter calibration will be a valuable asset 

going forward.  The sensitivity analysis codes used in this work also provide a variety of 

capabilities which were not previously available to our group, especially the ability to 

deal appropriately with a vector QoI. 

DISSERTATION LAYOUT 

Following this introductory chapter, the dissertation moves on to describe the 

numerical methods used in this work.  Chapter 2 covers the DSMC method including the 

improvements and modifications used for our shock simulations, Chapter 3 discusses our 

sensitivity analysis techniques, and Chapter 4 describes the techniques used for the 

solution of the inverse problem in order to calibrate parameters. 

After the numerical methods have been laid out, the main results from this work 

are presented.  Chapters 5 and 6 cover the sensitivity analyses for the 0D relaxation and 

the 1D shock, respectively, and Chapter 7 addresses the synthetic data calibration.  

Finally, Chapter 8 sets out the conclusions we have drawn from this work and discusses 

potential future work which might be of interest. 
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Chapter 2:  DSMC Methodology 

OVERVIEW 

The DSMC code used in this work is based on the method described by Bird 

(1994). The primary goal of the current work is to integrate DSMC with Bayesian 

statistical methods, and therefore we have chosen to employ a well-established, 

commonly understood DSMC algorithm.  In the future, the methods developed here 

could be applied to more advanced DSMC techniques such as the vibrationally favored 

dissociation model of Haas and Boyd (1993) or the sophisticated DSMC algorithm of 

Bird et al. (2009). 

In order to facilitate integration with various driver codes, the entire DSMC code 

is written as a subroutine.  It is capable of handling multiple species, each with its own 

molecular properties. Both vibrational and rotational internal energies are included, along 

with 5-species air chemistry, including dissociation, recombination, and exchange 

reactions.  It is currently set up to simulate 0-D relaxations and 1-D shocks.  The code is 

MPI parallel, and makes use of ensemble averaging (for 0-D relaxations) and adaptive 

load balancing (for 1-D shocks) to appropriately distribute work across processors. 

  

ELASTIC COLLISIONS 

Elastic collisions in the code are performed using the VHS collision model. VHS 

parameters for the 5 species used in this work are shown in Table 2.1.  In this work VHS 

parameters for cross-species collisions are usually obtained by a simple averaging of the 

parameters for the two species participating in the collision, but the code is capable of 

employing specific VHS parameters for cross-species collisions as well, if desired.  This 

feature is utilized during the sensitivity analysis for the 0-D relaxation. 
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Table 2.1: Collision parameters for 5-species air.  VHS parameters were compiled by 

Ozawa (2008).  C1 and C2 are based on those found in Bird (1994), but have 

been modified to account for the fact that Bird used different values for ω. 

Species ω 
dref (×10-10 

m) 
Tref (K) C1 C2 

N2 0.65 3.11 1000 5.02 220.0 

N 0.68 3.58 1000 - - 

O2 0.65 2.96 1000 23.17 153.5 

O 0.68 3.37 1000 - - 

NO 0.65 3.41 1000 5.02 220.0 

 

INELASTIC COLLISIONS 

The Larsen-Borgnakke model (Borgnakke and Larson, 1975) is employed for the 

modeling of particles with internal degrees of freedom within the DSMC framework. 

This model is phenomenological in nature. The key aspect of the model is that some 

fraction of collisions are regarded as inelastic, and in these collisions energy may be 

redistributed between the translational and internal modes. This redistribution is carried 

out based on selections of post-collision internal energies from the equilibrium 

distributions appropriate for the given mode at the collision energy. After the internal 

energies have been assigned, the remaining energy is assigned to the relative translational 

kinetic energy of the colliding particles. For a given inelastic collision, the post-collision 

energies are chosen from a distribution based on the energy of that particular collision, 

rather than a distribution based on the overall cell properties. This allows significant 

nonequilibrium to be present between the internal and translational modes at a given 

point in the flowfield.   

In this work, rotational modes of the diatomic species are assumed to be fully 

excited. Each particle has its own value of rotational energy, and this variable is 
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continuously distributed (rotation is not considered quantized due to the close spacing of 

rotational levels). Particles have either zero rotational degrees of freedom (monatomic 

species) or two degrees of freedom (diatomic species).  The parameter relevant to 

rotational excitation and relaxation is ZR, the rotational collision number. In our code, ZR 

is defined as 1/λR, where λR is the probability of a molecule’s rotational energy 

undergoing redistribution with the translational mode during any given collision.  During 

a collision, a separate random number draw is done for each colliding diatomic particle, 

and based on this, one, both, or neither of the particles may undergo an exchange of 

energy between the rotational and translational modes.  In the current work, we treat ZR 

as a constant (independent of collision partner and temperature) for all species with 

rotational degrees of freedom.  

Unlike rotation, vibration is not assumed to be fully excited, and vibrational levels 

are quantized. Each particle has its own vibrational level, which is associated with a 

certain vibrational energy based on the simple harmonic oscillator model.  In a given 

collision there is a separate probability λV for each colliding diatom, and a random 

number draw based on this probability determines whether that particle will exchange 

energy between the vibrational and translational modes.  As with rotation, λV = 1/ ZV, 

where ZV is the vibrational collision number.  In the work described here, ZV depends on 

collision temperature but not on collision partner, based on the expression 

            
            

   ⁄  ⁄  (2.1)  

where C1 and C2 are constants, Tcoll is the collision temperature as defined by Bird 

(1994), and ω is the temperature-viscosity exponent for the given species.  C1 and C2 are 

species specific, but they do not depend on the collision partner.  The values used for 

each species for C1 and C2 are obtained from Bird (1994), and are adjusted to account for 
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the fact that Bird’s values were calibrated with values of ω which differ from those used 

here.  C1 and C2 for the three diatomic species used in this work are listed in Table 2.1. 

 

CHEMICAL REACTIONS 

Chemical reactions in our code are handled by means of the TCE model. This 

model treats the ratio of the cross-section for a given reaction to the total collision cross-

section as a function of the total energy (translational and internal) of the two colliding 

particles. Bird (1994) lays out the process for determining the reaction cross-section as a 

function of the collision energy, and for determining the parameters of this function based 

on the parameters of an Arrhenius-type rate equation.  An Arrhenius-type rate equation 

takes the form 

                   (2.2) 

where Λ and η are reaction-specific constants, EA is the activation energy for the reaction, 

kb is the Boltzmann constant, and T is the temperature of the gas.  This form is not 

directly useful in DSMC because reactions and collisions in DSMC are handled by means 

of cross-sections, and so the Arrhenius parameters (Λ, η, and EA) must be used to obtain 

an equation for the cross-section.  Two such equations are derived in Bird (1994), one for 

exchange and dissociation (two-body) reactions, and one for recombination (three-body) 

reactions.  The equation for two-body reactions is 
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and the equation for three-body reactions is  
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where σR/σT is the ratio of the cross-section for the given reaction to the total cross-

section for interactions between the two particles.  A and B are the main reacting species 
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(not including the third-body), ε is a symmetry factor which is equal to one if A ≠ B and 

two if A = B, σref, Tref, and ωAB are VHS parameters for collisions between species A and 

B,   ̅is the average number of internal degrees of freedom which contribute to the 

collision energy, nT is the number density of the third-body, mr is the reduced mass of 

species A and B, Ec is the total collision energy (translational plus internal), and Γ() is the 

gamma function.  The above equation for three-body reactions assumes that the 

activation energy for these reactions is zero, which is the case for all recombination 

reactions which are relevant to five-species air chemistry. 

Bird (1994) assumes that the reaction cross-section will be small relative to the 

VHS collision cross-section, which allows for the VHS collision cross-section to be 

treated as the total cross-section for use in the above equations.  The advantage of this 

assumption is that reaction cross-sections only need to be calculated after a pair has been 

accepted for collision, rather than when the pair is initially selected.  However, this 

assumption is sometimes not accurate at high collision temperatures for several of the 

reactions involved in five-species air chemistry, and it can lead to noticeable error in both 

the reaction rates and the VHS collision rates in certain cases, as will be discussed in 

detail later in this chapter.  In our work, we require the ability to vary the Arrhenius pre-

exponential constants over orders of magnitude while still retaining accurate reaction 

rates (i.e. the actual reaction rates occurring in the DSMC code must match those 

predicted by the Arrhenius rate equation for a given set of Arrhenius parameters at a 

given temperature, after sufficient averaging to minimize statistical noise).  To this end, 

we have modified the model employed by Bird (1994) so that all of the reaction cross-

sections are calculated after a pair is selected (in order to compute σT), but before the 

collision is accepted.  With this model, σR/σT in the above equations is actually σR/σVHS, 

which is more accurate based on the derivation of the equations.  After σR/σVHS is 
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calculated for every potential reaction between species A and B, we can then obtain the 

total cross-section 

        (  ∑ (
  

    
⁄ )

 

  
   ) (2.5) 

where NR is the number of possible reactions between species A and B.  This σT is then 

used to determine acceptance or rejection of the given collision pair.  If the collision pair 

is accepted, a random number draw determines whether or not one of the reactions 

occurs.  The probability of a given reaction is simply the ratio σR/σT for that reaction, and 

the probability of a VHS collision is σVHS/σT.  Finally, note that inelastic (but non-

reactive) collisions are included within the VHS collision cross-section.  In principle, the 

above model could easily be applied for inelastic collisions as well, if separate cross-

sections were available for them.  In that case, σVHS would instead be σElastic, and σT 

would be expanded to include the inelastic collision cross-sections.  This is not done 

because separate cross-sections are not readily available for vibrational and rotational 

transitions, so instead the Larsen-Borgnakke model is used as described previously and 

inelastic collisions are treated as a subset of VHS collisions.  This is not a problem since 

the VHS parameters (dref and ω) were presumably calibrated with the understanding that 

the VHS cross-section would represent both elastic and inelastic collisions. 

Arrhenius rates for the reactions important for five-species air chemistry have 

been tabulated, for example by Gupta et al. (1989).  In this work, we make use of the 

forward rates provided by Gupta et al., along with backward rates calculated based on a 

matching with the equilibrium constant over a range of temperatures.  Table 2.2 contains 

the full list of reactions used in this work, along with the nominal Arrhenius parameters 

for each reaction.   
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Table 2.2: Reactions for 5-species air.  Nominal Arrhenius forward rate parameters are 

from Gupta et al. (1989), and backward rate parameters are based on a 

matching with the equilibrium constant over a range of temperatures. 

# Reaction 

Forward Rate 
Coefficients 

Backward Rate 
Coefficients qreaction 

Λ η EA Λ η EA 

1 2N2 ⇄ 2N + N2 8.0E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

2 N2 + N ⇄ 3N 6.9E-8 -1.5 1.6E-18 4.8E-46 0.27 0.0 -1.6E-18 

3 N2 + O2 ⇄ 2N + O2 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

4 N2 + O ⇄ 2N + O 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

5 N2 + NO ⇄ 2N + NO 3.2E-13 -0.5 1.6E-18 6.5E-47 0.27 0.0 -1.6E-18 

6 O2 + N2 ⇄ 2O + N2 1.2E-11 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

7 O2 + N ⇄ 2O + N 6.0E-12 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

8 2O2 ⇄ 2O + O2 5.4E-11 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

9 O2 + O ⇄ 3O 1.5E-10 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

10 O2 + NO ⇄ 2O + NO 6.0E-12 -1.0 8.2E-19 1.8E-47 0.27 0.0 -8.2E-19 

11 NO + N2 ⇄ N + O + N2 6.6E-10 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

12 NO + N ⇄ 2N + O 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

13 NO + O2 ⇄ N + O + O2 6.6E-10 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

14 NO + O ⇄ N + 2O 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

15 2NO ⇄ N + O + NO 1.3E-8 -1.5 1.0E-18 2.1E-46 0.27 0.0 -1.0E-18 

16 N2 + O ⇄ NO + N 1.1E-16 0.0 5.2E-19 2.5E-17 0.0 0.0 -5.2E-19 

17 NO + O ⇄ O2 + N 5.3E-21 1.0 2.7E-19 1.6E-18 0.5 5.0E-20 -2.7E-19 

 

1-D SHOCK SIMULATION TECHNIQUE 

Techniques for simulating 1-D, steady shocks with DSMC often require that the 

post-shock conditions be known initially.  In the case to be simulated in this work, where 

real gas effects (internal modes, chemistry, etc.) are present, the post shock conditions 

will not be exactly known a priori.  Furthermore, if a steady 1-D shock is desired, some 

form of artificial stabilization usually must be applied in order to keep the shock steady 

within the computational domain, since in a nominally-steady 1-D flow the shock may 

undergo a random walk in space.  Other techniques make use of a 2D code and the 
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assumption that a 1-D profile extracted from a 2D bow shock simulation can be used as a 

substitute for a 1-D shock, but this technique leads to a good deal of wasted 

computational effort since most of the 2D flowfield is not used for the desired profile.  

Due to these concerns, we have chosen instead to simulate the development of an 

unsteady 1-D shock.  The flow in the domain is initialized with a Maxwellian velocity 

distribution at the freestream (pre-shock) temperature, with a bulk velocity moving to the 

right.  The right boundary of the domain is set as a specular wall.  The left boundary of 

the domain represents a freestream; it generates molecules entering the domain with a 

Maxwellian velocity profile (offset by the freestream velocity) at the freestream 

temperature.  We use a uniform spatial grid throughout the 1D domain.  With this initial 

setup, at the beginning of the simulation an unsteady normal shock forms and begins 

propagating to the left.  The initial setup and early shock motion are shown in Figure 2.1. 

After a substantial amount of time has passed (50% of the total number of time 

steps for the run), the shock has moved a significant distance away from the right 

boundary, and the code begins sampling the upstream (pre-shock) and downstream (post-

shock) pressures.  The sampling region for the downstream pressure is offset slightly 

from the edge of the domain on the right side so that the pressure is not altered by the 

localized effects of the wall boundary.  The sampling regions are shown in the first image 

of Figure 2.2.  The shock continues to move while this sampling takes place over the 

course of a number of time steps (10% of the total length of the run).   

After this period of sampling the upstream (pre-shock) and downstream (post-

shock) pressures are known very accurately, and at this point the code begins to track the 

shock location.  At each sample interval, the pressure is calculated at every point in the 

domain.  The pressure at any given point is calculated from the gas equation P = ρRT, 

where R is the gas constant for the mixture, ρ is the mass density of the mixture, and T is 
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the total temperature of the mixture.  After the pressure is calculated, a normalized 

pressure is obtained for each point based on the equation 

       
    

     
 (2.6) 

where P is the pressure at a given x-location, P1 is the pre-shock pressure, and P2 is the 

post-shock pressure.  This normalized pressure is then boxcar averaged to obtain a 

smoothed value of Pnorm in each cell.  The shock location is defined as the location at 

which this boxcar averaged Pnorm is equal to 0.5, as shown in the second image of Fig. 

2.2.  Note that this location does not need to correspond to anything of particular physical 

importance in the shock profile, it is only important that the location be consistently 

defined so that it moves with a constant speed and stays fixed relative to the shock front.  

The shock location is tracked over a period of time (10% of the total length of the run) in 

order to obtain a precise shock propagation speed, as shown in the third image of Fig. 2.2. 

Once a shock propagation speed has been obtained a set of sample cells follows 

the motion of the shock, with the set of sample cells moved each time sampling is 

performed, based on the previously determined shock propagation speed.  The final 

image of Fig. 2.2 shows the sample region which propagates with the shock.  In this 

sample region, the shock can be viewed as steady. 

 

PARALLEL IMPLEMENTATION 

The DSMC code is MPI parallel.  When simulating a 0-D relaxation ensemble 

averaging allows for multiple processors to work on a single simulation; each processor 

runs its own version of the relaxation with a different random number seed and the results 

are averaged together at the end.  This is the only practical means of running a single cell 

DSMC calculation in parallel, and it is also very efficient.  When a 1-D shock is 
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simulated each processor is initially assigned a set of contiguous cells, and a given 

processor handles all movement, indexing, collisions, reactions, and any other required 

work on the particles within its set of cells.  A particle which leaves the domain of one 

processor is sent to the processor which owns the cell into which the particle has moved.  

Periodically, domain rebalancing is performed so that the work performed in a given time 

step is well balanced between all processors. 

 

 

Figure 2.1: Schematic showing the initial setup of the domain, the boundary conditions, 

and the early motion of the shock. 
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Figure 2.2: Schematic showing the pressure sampling process, the identification of the 

shock location, the calculation of the shock speed, and the location and 

motion of the shock sampling region. 
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VERIFICATION 

In order to test the modified TCE model used in this work and examine how well 

the DSMC code reproduces the VHS collision rates and the Arrhenius reaction rates, we 

ran a series of single step runs at various temperatures. For each such run, a 0-D box of 

molecules was initialized with equal number fractions of N2, N, O2, O, and NO, and a 

total number density of 1.0×10
23

 #/m
3
. The ratio of real to simulated particles was chosen 

so that there were ~5,000,000 simulated particles in the box (~1,000,000 of each species). 

The code was then run for a single time step and the number of VHS collisions and the 

number of each type of reaction were tabulated. These tabulated values were then 

ensemble averaged over a total of 320 single-step runs (each with a different random 

number seed).  Since the focus was on instantaneous rates, the reactions and collisions 

were not actually performed.  Instead the code simply identified what type of interaction 

was chosen and then left the properties of the colliding particle unchanged.  This was so 

that the properties of the gas did not change over the course of the single time step run.  

To further ensure that the rates we are examining are representative of instantaneous rates 

at the given conditions, the time step chosen was short enough that the vast majority of 

particles were not chosen for collisions or reactions at all.  Finally, because the 

recombination rates are so low, it is very difficult to get reaction rates from the DSMC 

code which are not dominated by statistical noise.  In order to examine the recombination 

rates, the entire process described above was performed a second time, after increasing 

the pre-exponential constant for the recombination rates by six-orders of magnitude.    

The Arrhenius rates are expressed as functions of a single temperature, and they 

are not very meaningful when local thermal equilibrium does not exist. Therefore, in 

these test cases all species were initialized with a given overall temperature. For the 

monatomic species this was simply the translational temperature, but for the diatomic 
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species the distribution of internal states was initialized to an equilibrium at the given 

temperature (i.e. Trot = Tvib = Ttrans = Tov). The TCE model does not require thermal 

equilibrium, it is only necessary in order for comparison with Arrhenius reaction rates to 

be meaningful. The above process was performed at a total of 64 temperatures between 

5000 K and 25000 K, and in Figure 2.3 the results from the DSMC code are compared 

with VHS collision rates based on kinetic theory and reaction rates based on the 

Arrhenius rate equations.  For clarity of the images, collision rates are only shown for 

some of the species combinations, and reaction rates are only shown for some of the 

reactions.  The VHS collision rates, dissociation reaction rates, and exchange reaction 

rates all come from the case with nominal recombination rate parameters.  As mentioned 

above, in order to get results which are not dominated by noise the recombination rate 

comparison is performed with much larger pre-exponential constants for all the 

recombination reactions (the predicted Arrhenius recombination rates are also calculated 

with this higher pre-exponential constant, so the comparison between DSMC and 

predicted rates is still valid).  Note the extremely good agreement between the predicted 

and actual rates for both VHS collisions and chemical reactions.  Those rates not shown 

have also been examined, and show similarly excellent agreement. 

 

PROOF OF NECESSITY OF THE TCE MODIFICATION 

The modified TCE model used in this work does incur some additional 

computational expense.  How large of an additional expense depends on the ratio of 

selections to VHS collisions, since the modification consists of performing the 

calculation of σR/σVHS whenever a pair of particles is selected, rather than only if the pair 

is chosen for a VHS collision.  In the work presented here, the computational expense of 
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each simulation was increased by slightly less than a factor of two when using the 

modified model as compared to when using traditional TCE.  Due to this additional 

computational expense, it is important to justify the use of the modified model. 

 

 

Figure 2.3.   Instantaneous rates for VHS collisions and for selected reactions over a 

range of temperatures. Number densities of N2, N, O2, O, and NO were all 

set at 2.0×10
22

 #/m
3
.  The temperatures shown are total temperatures, and 

the diatomic species were initialized with their rotational and vibrational 

modes in equilibrium with the translational mode.  Note the excellent 

agreement at all temperatures. 
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While the traditional TCE model does fine with the nominal reaction rates, 

reaction rates in this work are varied over a range of two orders of magnitude and in 

some regions of the parameter space the majority of the reaction rates will be much 

higher than the nominal values.  Our code must be able to give accurate results even in 

those cases, which means that the Arrhenius rates must be reproduced even when the 

reaction rates are substantially higher than the VHS collision rates.  In order to test the 

modified TCE model against traditional TCE, we performed another set of simulations 

similar to that described above, this time with Λ for every reaction set ten times higher 

than the nominal value.  A set of 64 temperatures was run with the modified TCE model 

and another set was run with traditional TCE.  The results for the two procedures are 

shown in Figure 2.4.  It is very clear from the figure that if we want to accurately model 

the higher reaction rates we must use the modified model.  Errors of greater than a factor 

of three are present at higher temperatures when using the traditional TCE model.  This is 

not surprising, since the rates for these reactions are higher than the VHS collision rates 

between the reactant species.  It is simply not possible for the traditional model to get the 

rates right, since with that model reactions are a subset of VHS collisions and there are 

not enough VHS collisions to go around.  Furthermore, in the case of O2 + N → NO + O 

this is not even the only reaction between these reactants; a dissociation reaction is also 

possible and occurs at a high rate.  The reaction N2 + N → 3N is the only reaction 

between these reactants and thus the error for this reaction, while still nearly a factor of 

two, is less than the error for O2 + N → NO + O. 
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Figure 2.4. Instantaneous rates for selected reactions over a range of temperatures.  

Initial conditions are the same as in Fig. 2.3, but Λ for every reaction is ten 

times higher than the nominal value.  At higher temperatures, the Arrhenius 

rates for the reactions shown are higher than the VHS rate for collisions 

between the reactants.  The modified TCE model used in this work matches 

the Arrhenius rates in spite of this, but the traditional TCE model (which 

assumes that σVHS can be used to approximate σTotal) is not able to match the 

Arrhenius rates in this situation. 

In order to further demonstrate the need for the modified TCE model in this work, 

we also ran two shock simulations (with the same initial conditions as the shocks for the 

sensitivity analysis which will be described in Chapter 6), and in both of these 

simulations Λ for every reaction was ten times higher than the nominal value (this 

represents the extreme corner of the parameter space which will be examined in the 

sensitivity analysis).  We used the modified TCE model in one of these simulations and 

traditional TCE in the other, and the results for ρNO (which will be our main quantity of 
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interest in the sensitivity analysis for the 1-D shock) are shown in Figure 2.5.  There are 

very substantial differences in the two profiles in the non-equilibrium region of interest, 

and thus we again conclude that we must use the modified TCE model in this work. 

 

Figure 2.5. Profiles of ρNO inside a shock at ~8000 m/s.  Note that the profiles differ 

significantly depending on whether traditional or modified TCE is used.  For 

these runs, Λ for every reaction is ten times higher than the nominal value. 
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Chapter 3:  Sensitivity Analysis Methodology 

OVERVIEW 

We will use two sensitivity analysis methods in this work, one based on the 

square of the Pearson correlation coefficient (r
2
) and the second based on the mutual 

information.  Both of these methods are global in nature and require a Monte Carlo 

sampling of the parameter space.  This sampling can be quite time consuming, but 

fortunately we can use the same data set for both methods. 

Once the sampling of the parameter space is complete, we calculate r
2
 and the 

mutual information for each parameter.  In cases where the QoI is a vector (i.e. we have 

values for the QoI at a set of discrete points in space or time) we treat each component of 

the vector as a distinct, scalar QoI, and we calculate r
2
 and the mutual information for 

each of these scalar QoIs.  We can then plot sensitivities as a function of x (or time, as 

appropriate). 

 

SAMPLING THE PARAMETER SPACE 

The type of global sensitivity analysis described here is distinguished from a local 

sensitivity analysis in several ways.  First, in a global analysis all of the parameters are 

varied simultaneously while in a local analysis the parameters are usually varied one at a 

time.  Second, the global analysis allows the parameters to vary over the entire parameter 

space, as opposed to only in a small range around their nominal values as is usually the 

case with a local analysis.  Furthermore, local analyses are usually based on calculating 

partial derivatives of the QoI with respect to each parameter, while no derivatives are 

calculated in the global analysis presented here.  Instead, the global sensitivity analysis is 

used to estimate the relative contribution of the uncertainty of each parameter to the 

overall uncertainty of the QoI. 
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There are a number of methods for performing a global sensitivity analysis.  

Many of the most advanced methods are intrusive, meaning that they require changes to 

the algorithm and/or equations used to simulated the physics.  Others require the creation 

of a surrogate model to be used in place of the actual model during the sensitivity 

analysis.  Due to the fact that DSMC simulations do not directly involve the solution of a 

set of differential equations, common intrusive methods which are based on rewriting 

differential equations are not practical.  Creating a surrogate model is also a challenge 

and proper creation of a surrogate model is a field of study in and of itself.  Due to these 

limitations, for this work we have chosen a Monte Carlo based approach which is non-

intrusive and which does not require the creation of a surrogate model.  This choice is 

also informed by the goal of making the techniques used here suitable for immediate 

application by the DSMC and rarefied gas dynamics communities, and a somewhat 

simpler, easier-to-understand method which does not require great knowledge of abstract 

mathematics is more likely to be used in the near future by those communities.   

The Monte Carlo method requires a sampling of the parameter space, and the 

dataset created by this sampling provides the input for the sensitivity analysis techniques.  

The sampling of the parameter space proceeds as follows: 

1.) Boundaries are established for each parameter.  In Bayesian terms, this 

means that we establish prior distributions for all of the parameters.  These priors are 

based on a combination of hard physical limits when those are present for a given 

parameter within a given model, review of the available literature, and expert judgment.  

For example in the VHS model a value for ω which is less than 0.5 or greater than 1 

would be physically incorrect.  The priors are intended to incorporate estimates of the 

uncertainty in these parameters, so that parameters whose values are considered better 
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known should be bounded more tightly than parameters whose true values are more 

uncertain. 

 In principle, these prior distributions could be uniform, Gaussian, or any other 

appropriate distribution.  Using a Gaussian prior (presumably centered at the nominal 

value of the parameter from expert judgment or the literature) implies some degree of 

confidence in that nominal value, with the level of confidence depending on the width of 

the Gaussian used.  In our case, we have very little confidence in the nominal values for 

many of our parameters, and the nominal value often depends on what particular prior 

work is referenced.  Therefore, in this work we will use the least informative possible 

prior, a uniform distribution over a broad range for each parameter.  The size of the range 

will be set for any given parameter based on an estimate for the uncertainty in that 

parameter, with the goal being to err on the side of overestimating the uncertainty rather 

than underestimating it.   

2.) A value for each parameter is selected based on a random number draw from the 

prior distribution for that parameter.  This process is performed individually for each 

parameter (i.e. an independent random number is drawn for each parameter, so that the 

values of the various parameters at a sample point are independent of one another). 

3.) A simulation is run for the scenario being examined (a 0D relaxation at a given 

initial temperature, a 1D shock with a given shock velocity, etc.) with the parameter 

values selected in the previous step.  The results of this simulation are stored for later use.  

Specifically, the value of a scalar QoI or a set of values of a vector QoI are saved.  For 

the time being, it will be assumed that the QoI is scalar (i.e. the value of the QoI can be 

represented as a single number). 

4.) Steps 2 and 3 are repeated a pre-determined number of times.  Each sample is 

independent of all of the others. 
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The end result of the above process is a dataset containing the model output for 

the QoI at a set of sample points in parameter space.  Thus, for each sample point we 

have Nparameters + 1 numbers, corresponding to the values for each of the parameters and 

one value for the QoI.  This dataset can then be statistically analyzed to determine 

sensitivities (based on the given QoI) for each parameter relative to the other parameters.  

In order to calculate a sensitivity for each parameter, the full dataset is projected from its 

original Nparameters + 1 dimensional space onto the two-dimensional space defined by the 

given parameter and the QoI.  This is shown for an example QoI and an example 

parameter in Figure 3.1.  The Pearson correlation coefficient and the mutual information 

for a given parameter can then be calculated based on this two-dimensional projection of 

the full dataset.  

 

PEARSON CORRELATION COEFFICIENT 

The Pearson correlation coefficient is the first of the two statistical measures used 

in this work to quantify sensitivities for a set of parameters.  The Pearson correlation 

coefficient is given by the equation 

   
∑      ̅      ̅ 

   
   

√∑      ̅  
   
   

√∑      ̅  
   
   

 (3.1) 

where NMC is the number of Monte Carlo samples of the parameter space in the dataset, 

Xi is the value of a given parameter at the i
th

 sample point from the dataset, and Yi is the 

value of the QoI which is output by the model (for the given scenario and with parameter 

values corresponding to the i
th

 sample point from the dataset).  We are not particularly 

interested here in whether the correlation is positive or negative, and so we will actually 

use r
2
 (the square of the Pearson correlation coefficient) as our measure of sensitivity. 
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Figure 3.1. Scatterplot showing values of a hypothetical QoI vs. values of a parameter 

θ1.  The dataset is obtained from a Monte Carlo sampling of the full 

parameter space (for this hypothetical example), and is projected onto the 

two-dimensional space shown. 

 The fact that scatterplots such as that shown in Figure 3.1 are projected onto a 

two-dimensional space from the full Nparameters + 1 dimensional space means that the 

variation of the QoI with respect to all of the parameters is inherently incorporated into 

the scatterplot, and it is for this reason that the r
2
 value for the scatterplot is useful as a 

measure of sensitivity for a given parameter.  If a given parameter does not have a strong 

effect on the QoI, then the r
2
 value for a scatterplot of that parameter vs. the QoI will be 

low, because the variance of the QoI will be mostly explained by other parameters.  If a 

parameter has a strong effect on the QoI, however, then a relationship will be visible in 

the scatterplot, and the corresponding r
2
 value will be relatively high.  Figure 3.2 shows a 

set of scatterplots which correspond to four different relationships between a hypothetical 

QoI and a hypothetical parameter θ1.  In the upper left image, there is clearly almost no 
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relationship between the parameter and the QoI.  Virtually all of the variance of the QoI 

must be explained by other parameters which were varied in the Monte Carlo sampling of 

the parameter space.  This qualitative analysis is also borne out by a very low r
2
 value.  In 

the upper right image, it is apparent that the value of the parameter does have some effect 

on the value of the QoI, but this effect is largely washed out by the variance of the QoI 

due to all of the other parameters, resulting in a fairly low r
2
 value.   In the lower left 

image, a strong relationship between the parameter and the QoI is apparent, to the point 

that the effect of this parameter on the QoI appears to be stronger than the effect of all of 

the other parameters combined.  This is confirmed by a high r
2
 value.  Finally, in the 

lower right image, the variation of the QoI is almost completely explained by this one 

parameter, and the r
2
 value approaches the maximum possible value of 1. 

 

MUTUAL INFORMATION 

The square of the Pearson correlation coefficient has the drawback that it cannot 

accurately measure highly non-linear correlations, and we do not know a priori whether 

the correlations between our parameters and our QoI will be linear.  As an example, the 

scatterplot in Figure 3.3 shows an obvious relationship between a hypothetical parameter 

and QoI, but the value of r
2
 is nearly zero because of the clear non-linearity of the 

relationship.   

A more sophisticated measure of sensitivity can be obtained from the mutual 

information.  In the context of sensitivity analysis, the mutual information represents a 

measure of the difference between two PDFs.  One of these PDFs is the actual joint 

probability distribution for a given parameter and the QoI, and the other is a hypothetical 

joint probability distribution for a case where the QoI and the parameter are assumed to 
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be independent.  The calculation of mutual information in this work largely follows the 

procedure described in the work of Steuer et al. (2002).  The process is shown in 

schematic form in Figures 3.4 - 3.7. 

 

 

Figure 3.2. Scatterplots and corresponding r
2
 values for different hypothetical 

relationships between a QoI and a parameter θ1.  Scatterplots which are 

tightly packed around an obvious trendline lead to high values of r
2
, and 

indicate a strong relationship between θ1 and the QoI. 

The first step in the process is to normalize the data so that it has a mean of zero 

and a standard deviation of one.  This normalization process preserves any correlation 
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which is present in the data.  The next step is to estimate the true 2D joint PDF (called 

p(θ1,QoI) in the schematic) based on the scatterplot data.  There are many ways to 

estimate the joint PDF, as discussed previously in Chapter 1.  In the simple histogram 

based method which is illustrated in Fig. 3.4, the two-dimensional space is divided into 

bins, and the estimate of the PDF within any given bin is based on the ratio of the number 

of sample points which fall into that bin to the total number of sample points.  The PDF is 

appropriately normalized so that ∫ ∫   
 

   

 

  
                .  In this work, kernel 

density estimation (KDE) is also used to estimate the joint PDF from the scatterplot data.  

When using KDE, a localized PDF (called a kernel) is placed at each scatterplot point, 

and the value of the joint PDF at any given location is approximated by the sum of the 

contribution from the kernels of all of the scatterplot points.  In this work, we use only 

Gaussian kernels with the KDE method.  Comparisons between the histogram and KDE 

methods will be performed in the next section.   

We also use the scatterplot data to generate 1D, marginal PDF’s of the QoI and θ1, 

as shown in Fig. 3.5 (again making use of either histogram bins or KDE).  Then, these 1D 

PDF’s are multiplied together to generate a hypothetical 2D PDF, as shown in Fig. 3.6.  

This new PDF represents a hypothesis that the QoI is completely independent of the 

parameter θ1.  Finally, the mutual information is defined as the Kullback-Leibler 

divergence between the true 2D joint PDF and the hypothetical 2D PDF, and is given by 

the equation 

                    ∫ ∫          [  (
         

           
)]

 

   

 

  
         (3.2)  

where the integrand is understood to be zero when p(θ1,QoI) is zero.  The calculation of 

the mutual information based on Eq. 3.2 is shown in schematic form in Fig. 3.7.  Since 

the mutual information can be viewed as a measure of the distance between the true joint 

PDF and the hypothetical PDF which would exist if the parameter and the QoI were 
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independent, it thus represents a measure of the sensitivity of the QoI to the parameter θ1.  

A value of zero for the mutual information guarantees independence of the QoI and the 

parameter (unlike a value of zero for r
2
, which could result from r

2
 failing to capture a 

non-linear relationship between the QoI and the parameter). 

 The fact that the mutual information can capture non-linear relationships is 

demonstrated by the scatterplot in Figure 3.3.  As discussed earlier, the non-linearity of 

the relationship between the parameter and the QoI leads to a value of r
2
 which is very 

close to zero.  The mutual information for this scatter plot is non-negligible, however, 

because the mutual information captures the non-linear relationship properly. 

 

Figure 3.3. Scatterplot showing values of a hypothetical QoI vs. values of a parameter 

θ1.  The relationship between the parameter and the QoI is clearly non-

linear, which results in a near-zero value for r
2
.  The mutual information 

properly captures the non-linear relationship between θ1 and the QoI. 
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Figure 3.4. Estimation of the joint PDF for a hypothetical parameter and QoI, by means 

of a simple histogram based method. 

 

Figure 3.5. Schematic for the next step in the calculation of the mutual information.  

The normalized scatterplot data are used to determine the 2D, joint PDF for 

the QoI and the parameter θ1, and also to determine (by integration along 

rows and columns) 1D, marginal PDFs of the QoI and the parameter θ1. 
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Figure 3.6. Schematic for the next step in the process of calculating the mutual 

information, in which the 1D marginal PDF’s calculated in the previous step 

are multiplied together to obtain a hypothetical 2D PDF corresponding to a 

case where the QoI is independent of θ1. 

 

Figure 3.7. Final step in the calculation of the mutual information.  The actual 2D joint 

PDF and the hypothetical 2D PDF are combined as shown, and the term for 

which contours are shown in the left image is integrated over the 2D space 

defined by the QoI and θ1, as in Eq. 3.2, to obtain the mutual information. 
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VERIFICATION 

Before moving on, it is worthwhile to verify that the methods used here have been 

implemented correctly and that the codes behave as expected.   

In the case of the correlation coefficient, little verification is needed.  The 

correlation coefficient is a very simple statistical measure and the equation is easy to 

implement.  There is a subtle distinction between the correlation coefficient and the 

mutual information when used as a measure of sensitivity.  In the case of the correlation 

coefficient, the equation itself (Eq. 3.1) is defined in terms of a set of discrete points.  

Even if the dataset has only a very small number of points, the r
2
 value from those points 

is still exactly the correct value for that set of points.  It is trivial to check the results from 

the analysis code used here against any number of common software packages (Excel, 

MATLAB, etc.).  The only question is whether there are enough points in the dataset to 

allow the r
2
 value of the dataset to provide a reasonable estimate of the sensitivity for a 

given parameter.  In the case of the mutual information, the situation is different.  The 

overall equation (Eq. 3.2) is defined in terms of continuous PDFs.  If those PDFs can be 

correctly estimated, the mutual information is guaranteed to provide a useful measure of 

the sensitivity for a parameter with respect to the given QoI.  The challenging part is 

using the scatterplot dataset to estimate the true joint and marginal PDFs as accurately as 

possible, which is why a great deal of work has been done in the past on this subject.  In 

this work, two methods were used, and both methods can be shown to properly estimate 

the true mutual information (for a case where the answer can be determined exactly) 

provided that enough data points are used. 

In order to perform this verification, a simple joint PDF will be used, so that the 

true mutual information can be determined exactly.  The equation for the joint PDF is 

          
 

 √  
 

         

    (3.3) 
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where σ is a constant.  We define this PDF over the parameter range 0 ≤ θ ≤ 1.  For any 

given value of θ, the PDF for the QoI is simply a Gaussian with standard deviation σ and 

mean θ.  Integrating for the marginal PDFs, it is easy to see that p(θ) = 1, as intended.  

The marginal PDF for θ is uniform so that this example is comparable with the actual 

sensitivity analysis method, since in this work the sampling of the parameter space is 

always uniform.  The integration for the marginal PDF for the QoI is not as simple, but it 

can be shown (either with a symbolic integrator or a table of integrals) that 

         
 

 
[   (

   

√  
)      (

     

√  
)] (3.4) 

where erf() is the error function.  This marginal PDF is shown in Figure 3.8, and the joint 

PDF is shown in Figure 3.9, both for a case with σ = 0.1. 

  

Figure 3.8. Marginal PDF for the QoI in the verification example. 

In order to obtain an exact value for the mutual information, we plug p(θ,QoI) 

from Eq. 3.3 and p(QoI) from Eq. 3.4 into Eq. 3.2, keeping in mind that p(θ) = 1.  The 

resulting equation cannot be symbolically integrated, but it can be numerically integrated 

with any number of common software packages in order to obtain the exact value (to any 

desired accuracy) for the mutual information.  For the case with σ = 0.1, the mutual 

information is equal to 1.0643.   

With this exact value in hand, we can then test our sensitivity analysis 

methodology.  We first perform a uniform sampling of our parameter space (in this case 
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we have only one parameter).  For each sample point, a value is drawn for θ from a 

uniform distribution between 0 and 1, and then a value is drawn for the QoI from the 

conditional distribution p(QoI|θ), which as discussed before is simply a Gaussian with 

mean θ and standard deviation σ = 0.1.  Once we have a sample set of the desired size, 

we can calculate the mutual information as described in the previous section, using either 

histogram bins or KDE.  A scatterplot for a sample set of 10,000 points is shown in 

Figure 3.10. 

 

Figure 3.9. Joint PDF of θ and the QoI in the verification example. 
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Figure 3.10. Scatterplot showing values of the QoI vs. values of θ for 10,000 sample 

points drawn from the joint PDF given by Eq. 3.3. 

Before we can perform the calculation, we must decide what size bins to use if we 

are using histogram bins or we must decide the width (i.e. the standard deviation) of the 

Gaussian kernels if we are using KDE.  As discussed by Steuer et al. (2002), this choice 

is important.  If we choose bin/kernel widths which are too large, we will wash out the 

detail of the joint PDF and we will underestimate the mutual information.  If, on the other 

hand, we choose bin/kernel widths which are too small, we will overestimate the 

complexity of the joint PDF and we will overestimate the mutual information.  

Unfortunately, choosing the optimal bin/kernel width would require a priori knowledge 

of the joint PDF which we are trying to estimate.  For this verification test, though, we 

know the exact answer, and this allows us to compare the performance of the histogram 

and KDE methods for various bin/kernel widths. 
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 In Figure 3.11, we plot the mutual information determined from sample sets of 

various sizes as a function of the width of the histogram bins used to estimate the PDFs.  

A number of things are apparent from the figure.  First, all of the curves intersect the true 

value.  This is to be expected, since as discussed previously, the mutual information is 

underestimated if the width of the bins is too large and overestimated if the width of the 

bins is too small.  There is a distinction between these two sources of error, however.  

The underestimation of the mutual information which occurs if the bins are too large is 

essentially unrelated to the number of sample points, at least for any reasonable sample 

size.  Adding additional sample points does not remove this error because the PDF is only 

defined on the scale of the histogram bins (i.e. the PDF is defined to be uniform 

throughout a given histogram bin), and thus adding more sample points only improves 

the estimation of the PDF on this scale.  If large bin sizes wash out the detail of the 

underlying joint PDF, having additional sample points will not solve the problem.   

 The error which results in the overestimation of the mutual information when the 

histogram bins are too small, however, is dependent on sample size.  This overestimation 

is called the spurious mutual information, and it arises because when the sample size is 

finite, using very small bin sizes leads to a large amount of randomness in the value of 

the PDF within any given histogram bin.  Put another way, when resolved to a small 

enough scale, any scatterplot based a finite sample set will appear to show fine scale 

structure, but this fine scale structure will be due to randomness and not due to any 

genuine complexity of the PDF.  Overestimating the complexity of the joint PDF in this 

way leads to an overestimation of the mutual information.  This error source, though, can 

be mitigated by using larger numbers of sample points.  The larger the number of sample 

points, the smaller the histogram bins may be without resulting in significant 

overestimation of the mutual information.  This is borne out by the results in Fig. 3.11, 
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where it can be seen that when using 10,000,000 sample points, there is a broad range of 

histogram bin width for which the calculated mutual information essentially converges to 

the true value.  In this range, the bins are small enough to properly resolve the joint PDF, 

but due to the large number of sample points spurious small scale structure is not a 

problem.  This range of convergence is present but smaller for the 1,000,000 and 100,000 

sample point cases.  For the 10,000 sample point case, there is a range where the 

calculated mutual information remains near the true value but there is not true 

convergence.  Finally, for the 1,000 sample point case there is no range over which the 

mutual information remains near the true value, the curve simply crosses the true value as 

it moves from underestimating to overestimating the mutual information. 

 

Figure 3.11. The calculated mutual information as a function of the width of the 

histogram bins used to estimate the PDFs.  Curves are shown for several 

different numbers of sample points.  The true value is shown for 

comparison. 

Histogram Bin Width

M
u

tu
a

l
In

fo
rm

a
ti

o
n

10
-2

10
-1

10
00

0.5

1

1.5

2

10,000,000 Sample Points

1,000,000 Sample Points

100,000 Sample Points

10,000 Sample Points

1,000 Sample Points

True Value



 52 

 

Figure 3.12. The calculated mutual information as a function of the width of the 

Gaussian kernel in the KDE method used to estimate the PDFs.  Curves are 

shown for several different numbers of sample points.  The true value is 

shown for comparison. 

Figure 3.12 is similar to Fig. 3.11, except for this figure KDE is used to estimate 

the PDFs and the curves show calculated mutual information vs. the standard deviation 

(i.e. width) of the Gaussian kernels.  This width is referred to as h in the figure and 

discussion, following the notation of Steuer et al. (2002).  The curves seen in this figure 

are very similar to those seen in Fig. 3.11, and the same trends are present.  If h is too 

large the mutual information is underestimated, and if h is too small the mutual 

information is overestimated.  When larger sample sets are used, there is a range of h 

over which the mutual information converges to the true value.  The fact that this range 

of convergence exists (both when using histogram bins and when using KDE to estimate 
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the PDFs) is important, because it provides some verification that our method for 

calculating the mutual information from a dataset has been correctly implemented. 

 

Figure 3.13. The calculated mutual information as a function of the kernel width for the 

KDE method and the equivalent kernel width for the histogram method.  

Curves are shown for several different numbers of sample points.  The true 

value is shown for comparison. 

We would like to directly compare the histogram and KDE methods, but in order 

to do this we must decide how to define a relationship between histogram bin width and 

the width of the Gaussian kernel (i.e. we must have an equation that, for a given 

histogram bin width, provides an “equivalent” Gaussian kernel width).  The trivial 

solution is to treat the histogram bin width as equivalent to the Gaussian kernel width, but 

this is not a proper choice.  The height of a Gaussian is still more than half its maximum 

value at a distance one standard deviation from its center.  After some empirical 

examination, it was found that a good equivalent Gaussian kernel width is equal to 1/6
th

 

of the histogram bin width.  With this Gaussian width, if the Gaussian were centered at 

the center of the histogram bin then a ±3σ range of the Gaussian (and thus the vast 
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majority of the area under the Gaussian curve) would be contained within the histogram 

bin. 

Making use of this equivalent Gaussian kernel width for the histogram cases, in 

Figure 3.13 we plot curves for calculated mutual information vs. kernel width for both 

methods of estimating the PDFs.  It is apparent from the figure that our equivalent width 

is well chosen, because the underestimation of the mutual information due to overly large 

kernel width becomes apparent at very nearly the same point on the x-axis for both the 

histogram and KDE cases.  It is also apparent from this figure that for any given number 

of sample points, the range of convergence for the KDE method is slightly larger than the 

range of convergence for the histogram method.  For this reason, we elect to use KDE to 

estimate the PDFs when calculating the mutual information in the remainder of this work. 

 

SENSITIVITY ANALYSIS EXAMPLES 

 Many of the important features of the sensitivity analysis methodology used in 

this work can be illustrated with a few simple examples.  For these examples, we use a 

hypothetical QoI which can be expressed as a simple analytical function of a single 

spatial variable.  This analytical function serves as our “model” in this example, and the 

model equation requires three parameters.  The equation is 

                                
 (3.5) 

where A, B, and C are the three parameters.  This QoI is not intended to represent any 

physical quantity relevant to hypersonic shocks, it is simply an example for illustrative 

purposes.  In this example, each parameter will be allowed to take on values between 0 

and 1, and the spatial variable x falls within the range 0 < x < 2.  In Figure 3.14, curves 

are shown for QoI(x) for a variety of values of A, B, and C (all between 0 and 1). 
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Before going any further we must address the fact that our QoI is not a single 

scalar value, rather it is a function which will take on multiple values as x varies over the 

range from 0 through 2.  This is the type of QoI we will be dealing with when performing 

sensitivity analyses for both the 0D relaxation (where the spatial variable x is replaced by 

time) and the 1D shock (where x represents the distance from the shock front).  Since we 

are dealing with numerical simulations, QoIs for those cases will not be continuous; 

instead they will be vectors where each component of the vector corresponds to a discrete 

point in time or space.  We will treat the QoI for this example in the same way; we will 

obtain output from our “model” at a series of discrete x locations.  However, the 

sensitivity analysis techniques described in the previous sections are intended to be used 

for a scalar QoI.  For this reason, we treat each component of the vector QoI (i.e. the 

value of the QoI at each discrete point in x) as an individual, scalar QoI, and we carry out 

the full analysis for each scalar QoI.  The results of these individual analyses are then 

combined to give us a full picture of the sensitivities for the various parameters as a 

function of x.  This concept is shown in schematic form in Figure 3.15. 

With our set of scalar QoIs and our parameters defined, we then carry out a Monte 

Carlo sampling of the parameter space (using 100,000 sample points), and based on this 

sampling we calculate sensitivities based on both r
2
 and the mutual information for all 

three parameters for each scalar QoI.  We use KDE when estimating the PDFs during the 

calculation of the mutual information, and thus we need to choose a width, h, for the 

Gaussian kernel.  In the previous section we showed that picking an inappropriate width 

for the kernel can lead to significant underestimation or overestimation of the mutual 

information.  In this example (and in the sensitivity analyses for the 0D relaxation and the 

1D shock in subsequent chapters) we follow the technique of Steuer et al. (2002) and use 

a value for h which can be mathematically shown to be optimal if the PDFs being 
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estimated are Gaussian.  This value of h, which will be referred to as hopt (following the 

notation of Steuer et al.) is given by the equation 

       (
 

   
)
      ⁄

   
       ⁄

 (3.6) 

where σ is the standard deviation of the data (when estimating a 2D PDF, σ is the average 

marginal standard deviation of the two variables), d is the dimension of the PDF being 

estimated, and NMC is the number of Monte Carlo sample points.  In our case, we have 

normalized the datasets so that σ = 1.  Thus, when estimating the 1D marginal PDFs the 

equation reduces to      (
 

    
)
  ⁄

, and when estimating the 2D joint PDF it reduces 

to      (
 

   
)
  ⁄

.  We use hopt when calculating the mutual information for the 

remainder of this work.   

 

Figure 3.14. QoI(x) profiles for a variety of values of A, B, and C. 
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Figure 3.15. Schematic showing the way in which a vector QoI is broken into individual 

scalar QoIs during the sensitivity analysis. 

We also take one other step to mitigate errors in the calculation of the mutual 

information.  In addition to the parameters A, B, and C from Eq. 3.5, we calculate the 

mutual information for a dummy parameter.  This dummy parameter is sampled over the 

range from 0 to 1 just like the others, but it is not present in the equation for QoI(x), and 

so by definition the QoI is completely independent of this parameter and the mutual 

information calculated for this parameter can be used to estimate the spurious mutual 

information due to randomness.  We do not want this spurious mutual information to 

affect the relative sensitivities of our parameters, so we subtract the mutual information 

which is calculated for the dummy parameter from the values of mutual information 
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calculated for the other parameters.  We then use this corrected value for the mutual 

information in all subsequent analysis. 

 Once we have calculated sensitivities based on r
2
 and the mutual information for 

each scalar QoI, we can then plot these sensitivities as a function of x (since each scalar 

QoI represents QoI(x) at a particular x location).  This plot is shown in Figure 3.16.  The 

sensitivity curves in the plot are actually not extended to show the sensitivities at x = 0 

because QoI(0) = 0 regardless of the values of the parameters, and thus the sensitivities 

are also all zero there.  Looking first at the sensitivities for x < 1, by either measure the 

QoI is most sensitive to parameter A, followed by parameter B, and is least sensitive to 

parameter C.  These results are what we would qualitatively expect based on an 

examination of Eq. 3.5, since sqrt(x) > x > x
2
 for values of x which are between 0 and 1.  

At x = 1, by either measure the QoI is equally sensitive to all three parameters, since 

sqrt(x) = x = x
2
 when x = 1.  Finally, the order of the sensitivities is flipped on the right 

side of the plot, where x > 1, because x
2
 > x > sqrt(x) when x > 1. 

 The curves in Fig. 3.16 have been shown on separate axes (one for r
2
, one for the 

mutual information) and the range of these axes is chosen so that the maximum height of 

any of the three curves based on r
2
 is equal to the maximum height of any of the three 

curves based on the mutual information.  This visual normalization of the curves is done 

because while r
2
 is mathematically bounded to be within 0 ≤ r

2
 ≤ 1, the same is not true of 

the mutual information.  The mutual information will never be less than zero, but it may 

exceed 1 (and does at certain x locations in this case).  The maximum sensitivity based on 

either measure is that of parameter A as x approaches (but does not actually equal) zero.  

Comparing the curves over the rest of the range, we see that while both sets pick out the 

correct order of the parameters, the curves are qualitatively different depending on which 

measure of sensitivity is used.  This is not due to r
2
 failing to capture a non-linear 
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correlation, because all the correlations here are linear by construction.  The QoI in Eq. 

3.5 depends non-linearly on x, but at any given x-location it depends linearly on the 

values of A, B, and C.  The difference in the curves is due to the fact that r
2
 and the 

mutual information are fundamentally different measures, and they provide different 

results (even after normalization) depending on the level of scatter in the data.  This point 

is made clearer by Figure 3.17, which shows three scatter plots and their corresponding 

values of r
2
, the mutual information, and the ratio of the mutual information to r

2
.  For the 

scatterplot in the top image (where the points are all packed tightly about the trendline) 

MI/r
2
 is equal to 1.4, while in the bottom left image (where scatter about the trendline is 

greater) MI/r
2
 is equal to 0.9, and in the bottom right image (where the points are even 

more scattered) MI/r
2
 is equal to 0.6.  This cannot be fixed by normalization, of course, 

since it is the ratios we are discussing.  The fact that r
2
 and the mutual information 

measure sensitivity in different ways is actually a good thing, because it allows for the 

dataset to be examined in more than one way.  Even though the mutual information is a 

more sophisticated method, it is still beneficial to examine sensitivities based on both 

methods in order to understand the results better. 

 There is also an area in which r
2
 outperforms the mutual information.  Because it 

is a simpler method which does not require the estimation of PDFs, it performs better (in 

a convergence sense) when using small numbers of sample points.  This is illustrated in 

Figure 3.18, which compares curves for the sensitivity for parameter C for datasets of 

different sizes.  In the left image, the curve for sensitivity based on r
2
 with 10,000 sample 

points is almost indistinguishable from the curve for 100,000 sample points, and even the 

curve for 1,000 sample points is very close to the curves for the larger datasets.  In the 

right image, though, the mutual information curve for 1,000 sample points is significantly 

different from the curve for 100,000 sample points, and even the 10,000 point curve is 
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slightly different when compared to the 100,000 sample point curve.  The mutual 

information behaves in this way because it is necessary to choose a Gaussian kernel 

width, and the appropriate width depends on the PDF being estimated.  We use hopt, as 

discussed previously, but hopt as we have defined it is only mathematically known to be 

optimal if the PDFs being estimated are Gaussian, which in practice they are not.  

Calculating r
2
, on the other hand, does not require that a value be specified for any 

adjustable numerical parameters; with r
2
 there is no parameter like the Gaussian kernel 

width (or the histogram bin width).  

 

Figure 3.16. Sensitivities based on r
2
 and the mutual information for each of the three 

parameters in Eq. 3.5.  Sensitivities are plotted as a function of x, and each x 

location corresponds to a particular scalar QoI (as shown in Fig. 3.15). 
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Figure 3.17. Scatterplots for the QoI vs. parameter A at three different x locations.  Note 

that the ratio of the mutual information to r
2
 is different for each of the 

scatterplots.  

When we make use of these sensitivity analysis methods in the context of DSMC 

simulations, we will confront the issue of stochastic noise in the simulation results (and 

thus in the QoI).  To examine how our methods will behave in a situation where the QoI 

is affected by noise, the analysis above was redone for three additional cases.  In the first 

and second of these cases, white noise with a fixed amplitude (and mean zero) is added to 

the QoI from Eq. 3.5.  The amplitude of the noise added in the second case is four times 
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the amplitude of the noise added in the first case.  In Figure 3.19, profiles are shown for 

the noiseless case discussed previously and for the two cases with noise added.  The 

values of A, B, and C are the same for each of the three profiles.   

 

 

Figure 3.18. Sensitivities based on r
2
 and the mutual information as a function of x for 

parameter C for three different numbers of Monte Carlo sample points.  The 

curves for sensitivities based on r
2
 are much less affected by the number of 

sample points. 

The sensitivity analysis was carried out for the low and high noise cases in the 

same way as it was originally carried out for the noiseless case.  The sensitivity vs. x 

curves based on r
2
 for each of parameters are shown for all three cases in Figure 3.20, and 

Figure 3.21 shows the equivalent curves for sensitivities based on the mutual information.  

In the middle region near x = 1 the sensitivities (based on either measure) are almost the 

same for the noiseless and low noise amplitude cases, and even the high amplitude noise 

only lowers the sensitivity slightly.  However, in the regions near x = 0 and near x = 2 the 

sensitivities are much lower in the cases with noise than in the noiseless case, and the 

decrease in the calculated sensitivity is substantially larger for the higher amplitude noise 
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case than for the lower amplitude noise case.  This behavior is as expected.  In the middle 

near x = 1 the standard deviation of the QoI from the dataset (based on the sampling of 

the parameter space) is large relative to the noise amplitude (especially for the lower 

noise amplitude case), and thus the effect on the QoI of changes in the parameters can 

still be separated from the noise which is superimposed on the QoI.  That is, the portion 

of the variance explained by the uncertainty in the parameters is large relative to the 

portion of the variance which is caused by the white noise.  In the regions near x = 0 and 

near x = 2, the standard deviation of the QoI from the dataset is much lower, and 

therefore the contribution of the noise to the variance of the QoI is large relative to the 

contributions of the uncertain parameters, and thus the sensitivities calculated for the 

parameters are low compared to the noiseless case (where all of the variance of the QoI is 

by definition explained by the parameters).  This tells us that, when using DSMC as our 

model, we will need to make sure that the stochastic noise in the QoI is substantially 

smaller than the standard deviation of the QoI from the dataset generated by the Monte 

Carlo sampling of the parameter space. 

Before moving on, one more example will help illustrate another aspect of the 

relationship between stochastic noise and the sensitivities to various parameters.  In the 

previous cases with noise the amplitude of the noise was fixed, but in some practical 

cases numerical or even physical parameters will control the noise amplitude.  To test the 

methodology for this case, we use a slightly modified version of Eq. 3.5 which includes a 

fourth parameter (parameter D) that controls the amplitude of the additive white noise.  

The equation for this new QoI is 

                                
                  (3.7) 

where Rnum is a random number between 0 and 1.  A new random number is drawn for 

each x location (i.e. for each scalar QoI).   
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Figure 3.19. Sample profiles based on Eq. 3.5 after the addition of white noise with two 

different amplitudes. 
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to the curves in Fig. 3.15 because the effect of the noise is much less significant when the 

standard deviation of the QoI is large compared to the noise amplitude. 

 

Figure 3.20. Sensitivities based on r
2
 as a function of x for all three parameters for three 

different levels of white noise which were added to the QoI from Eq. 3.5. 
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Figure 3.21. Sensitivities based on the mutual information as a function of x for all three 

parameters for three different levels of white noise added to the QoI from 

Eq. 3.5. 
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case we had the benefit of being able to compare to a noiseless case, but in a practical 

problem it would often not be possible to fully eliminate the noise, and thus being able to 

use the mutual information to characterize the sensitivity of the QoI to noise relative to 

sensitivities to the other uncertain parameters can provide useful insight about the 

significance of noise when interpreting sensitivity analysis results for a given case.  This 

will be discussed further in the context of the 0D sensitivity analysis in Chapter 5. 

 

Figure 3.22. Sensitivities as a function of x for all four parameters from Eq. 3.7.  The 

mutual information captures the sensitivity of the QoI to the noise amplitude 

(parameter D) while r
2
 does not. 
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Figure 3.23. Scatterplot for the QoI vs. parameter D from Eq. 3.7, which controls the 

amplitude of the additive white noise.  Parameter D clearly affects the 

distribution of values of the QoI, but the relationship is non-linear and thus 

r
2
 is very nearly zero.  The mutual information does capture the relationship. 
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Chapter 4:  Solving the Inverse Problem 

OVERVIEW 

In this work we use the Markov Chain Monte Carlo (MCMC) algorithm to solve 

the statistical inverse problem in order to calibrate parameters.  In this chapter we first 

discuss the basic Metropolis-Hastings MCMC algorithm, and then we move on to address 

two improvements to the algorithm which can allow the chains to converge to the 

posterior distributions more quickly (i.e. with the use of fewer chain positions).  The first 

of these improvements is delayed rejection and the second is adaptation of the covariance 

matrix for the proposal distribution from which candidate positions are selected.  The 

MCMC algorithm which includes both of these improvements is known as Delayed 

Rejection Adaptive Metropolis (DRAM), and was first implemented by Haario et al. 

(2006). 

This chapter will also describe the implementation of these algorithms in the 

codes used in this work and how the various codes interact during the solution of the 

statistical inverse problem. 

Finally, some example calibrations and their results will be discussed in order to 

illustrate various aspects of the process. 

 

MCMC ALGORITHM 

Basic Metropolis-Hastings Algorithm 

The Metropolis-Hastings MCMC algorithm is a statistical method which is used 

to solve the inverse problem in order to calibrate parameters for a given model with 

respect to a set or sets of data.  Before we make use of MCMC, we assume that we have 

picked a model, selected a set of parameters from that model for calibration (most likely 
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based on the results of a sensitivity analysis), established prior distributions for those 

parameters, and selected a scenario and a set of data on which to base the calibration.  All 

of those aspects of the process were discussed in the previous chapter.  Note that in this 

work we use only uniform prior distributions, which means that the priors cancel out of 

all the equations in this section and the next.  With these elements in place, the algorithm 

proceeds via the following steps (which can also be seen in flowchart form in Figure 4.1): 

 

Figure 4.1. Flowchart for the basic Metropolis-Hastings algorithm, starting at the box 

on the upper left.  The loop on the right side is repeated until the Markov 

chain has reached the desired length or until some specified convergence 

metrics have been achieved. 
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1.) We must first select a starting position in parameter space from which to begin the 

Markov chain.  This starting position may be specified beforehand or initial values for the 

parameters may be randomly selected from their prior distributions.  In this work, the 

chain starting positions are always randomly selected. 

2.) A simulation is run with this set of parameters, and the model generates output 

which can be compared with the calibration data. 

3.) The model results are compared to the calibration data and based on this 

comparison a likelihood is calculated for this set of parameters.  In this work we use a 

Gaussian likelihood function.  The likelihood for a given set of parameters is given by the 

equation 

               |   
 

    
  
 | |

 
 

   [ 
 

 
               ]  (4.1) 

where Nd is the number of calibration data points,       is the vector of data points 

from the calibration dataset,       is the model output vector, and          is a 

covariance matrix.  If we assume that the data points are independent of one another the 

covariance matrix becomes diagonal, and if we further assume that the uncertainty is the 

same for all data points, then the above equation reduces to 
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where σ
2
 is the variance of the value at each data point. 

 The above equations are worth discussing in a little more detail.  When we use 

these equations we are assuming that, due to uncertainty in the techniques used to 

measure the data, we do not have complete confidence in the values at each point in the 

dataset.  We assume that, if the experiment which generated the data were repeated a 

large number of times, we would find that the values for any given data point would 

follow a Gaussian distribution about some mean value.  As mentioned above, if we make 
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the assumption that all of the data points are independent of one another and also that the 

uncertainty is the same for all of the data points, we can simplify the Gaussian and 

represent the uncertainty by only one parameter, σ
2
, the variance of the Gaussian 

distribution for each data point. 

When we use our model to run a simulation for a given point in parameter space 

we obtain a set of values for the model output at all of the data points.  We then 

hypothesize that our model is correctly formulated and is able to fully and accurately 

simulate the scenario at hand, and we further hypothesize that the current point in 

parameter space corresponds to the best possible set of parameter values for the given 

model and scenario.  If this were true, the output of our model for each data point would 

represent the true mean value for that data point which we would expect to obtain from a 

large set of experiments.  Eq. 4.1 or 4.2 is then used to assess the likelihood that our 

hypothesis is correct.  This is accomplished by calculating P(D|θ), which is the 

probability of obtaining the set of data points D given the assumption that the current set 

of parameter values θ is the best possible set of parameter values (i.e. that the model 

output based on these parameter values represents the true mean values for the data 

points). 

4.) A new candidate chain position is drawn from a multi-dimensional Gaussian 

proposal distribution centered at the current chain position.  The covariance matrix of this 

Gaussian controls the average distance (in parameter space) that the chain moves in one 

step.  We usually do not know a priori exactly how couplings between parameters will 

manifest themselves, and therefore we often start with a simple, diagonal covariance 

matrix for the proposal distribution.  The proposal distribution can have a very strong 

effect on the convergence of the Markov chain, and a bad choice for the covariance 

matrix can dramatically increase the number of chain positions required for convergence. 
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In some cases the chain will not converge with any practical number of chain positions.  

The improvements to the basic Metropolis-Hastings algorithm which are incorporated 

into the more advanced DRAM algorithm help to address this issue, as will be discussed 

in the next section. 

5.) A simulation is run with the candidate set of parameters and model output is 

generated for comparison with the calibration data.  A likelihood is calculated for the 

candidate set of parameters in the same way as in step 3. 

6.) If the likelihood of the candidate position is higher than the likelihood of the 

current position, the candidate position is always accepted.  If the likelihood of the 

candidate position is lower than the likelihood of the current position, the candidate 

position is accepted or rejected based on a random number draw, where 

Probabilityacceptance =  likelihoodcandidate/likelihoodcurrent. 

7.) Steps 4-6 are repeated until the Markov chain has reached the desired length or 

until some specified convergence metrics have been achieved.  Ideally, by the end the 

chain will have converged to the posterior (i.e. post-calibration) distribution for the 

parameters.  In this context, we will use convergence to mean that the parameter space 

has been explored to a sufficient extent, that the starting position chosen for the chain has 

no impact on the final distribution of chain positions, and that the distribution of chain 

positions has become stationary.  In practice, the early part of the chain may be thrown 

away in order to help remove the effect of the choice of starting position.  Additionally, 

more than one chain may be used in order to help ensure fuller coverage of the parameter 

space. 

At the end of the above process we have stored a list of chain positions, with each 

position corresponding to a set of values of the model parameters.  If we have performed 

the process correctly and if the chain has converged, then this list of chain positions can 
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be used to obtain an accurate estimate of the posterior PDF for each model parameter, 

based on calibration with the given dataset. 

 

Delayed Rejection Adaptive Metropolis Algorithm 

As mentioned in the previous section, a Markov chain must be converged in order 

for the set of chain positions to be representative of the posterior distributions for the 

model parameters.  The basic Metropolis-Hastings MCMC algorithm sometimes has 

difficulty achieving any semblance of convergence, especially in cases where an 

appropriate proposal covariance matrix is not well-known initially.  If the proposal 

distribution is too narrow (leading to very small jumps in parameter space) the Markov 

chain will have to be extremely long in order to fully explore the parameter space, often 

to the point where doing enough simulations to achieve a chain of the necessary length 

becomes impractical.  If the proposal distribution is too broad (leading to large jumps in 

parameter space) the Markov chain will more fully explore the parameter space, but it 

will have difficulty focusing in to properly explore the regions with high likelihood.  It 

will often find a position where the likelihood is high and then repeatedly select far-off 

candidates with low-likelihood (which are then rejected), causing it to stay at that 

position for an excessive amount of time.  This can lead to very sharp peaks and valleys 

in the posterior distribution at some locations.  In theory, these spikes would slowly 

smooth out (provided that the true posterior distribution is itself smooth) as the length of 

the chain grows very large, but the number of positions required can often be 

unrealistically large for computational tractability.   

Beyond the problem of the initially specified proposal distribution often being 

either “too narrow” or “too broad”, we also have to deal with the fact that the appropriate 
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jump size might (and usually will) be different for different parameters.   Furthermore, 

there is also the issue of coupling between the parameters.  An appropriate size jump for 

one parameter might depend on the sizes and directions of the jumps in other parameters.  

In a case like this, the covariance matrix for the proposal distribution will not be 

diagonal.  It will often be nearly impossible to get a good a priori estimate of appropriate 

values for all of the terms of a full covariance matrix for a problem with several 

parameters. 

As discussed in the Literature Review, this problem has been addressed by others 

in the past, and a couple of key improvements have been made to the basic Metropolis-

Hastings algorithm.  One of these improvements is the use of delayed rejection and the 

other is the adaptation of the proposal covariance matrix.  We will discuss each of the 

improvements, following the description of Haario et al. (2006). 

The idea behind delayed rejection is simple.  If the initially specified proposal 

covariance matrix for a given calibration is poorly scaled (i.e. it leads to jumps which are 

in general too large or too small) it can be useful to use a multi-step process for choosing 

the next chain position.  The first candidate is chosen from the proposal distribution as 

usual.  If this candidate is accepted, it becomes the current position and we start the 

process for a new position (just like we would with basic Metropolis-Hastings).  If the 

candidate is rejected, however, we do not immediately decide to retain the current 

position.  Instead, a second stage candidate is chosen from a scaled version of the 

proposal distribution.  This scaling is done by multiplying the proposal covariance matrix 

by a single scalar value.  In principle, the proposal covariance matrix can be scaled up or 

down, but in general it is more effective to start with a proposal distribution which is too 

broad and then use delayed rejection to narrow the distribution for the second attempt.  

(i.e. we usually scale the proposal covariance matrix by a number which is less than one).   
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After the second stage candidate position has been selected based on the scaled proposal 

distribution the likelihood is calculated for this position.  If this likelihood is less than the 

likelihood for the first stage candidate then the second stage candidate is automatically 

rejected.  Otherwise, the second stage candidate is accepted or rejected with a probability 

equal to 

             
            

            

[                           ]

[                           ]
 (4.3) 

where XCCP is the location in parameter space of the current chain position, XFSC is the 

location in parameter space of the first stage candidate position, and XSSC is the location 

in parameter space of the second stage candidate position.  The terms q(XSSC,XFSC) and 

q(XSSC,XFSC) are, respectively, the probability of proposing a jump from the second stage 

candidate position to the first stage candidate position (based on the unscaled proposal 

distribution) and the probability of proposing a jump from the current chain position to 

the first stage candidate position (again based on the unscaled proposal distribution).  The 

two q terms are present to satisfy the requirement that the Markov chain remains 

reversible (Haario et al., 2006).  Finally, likelihoodCCP is the likelihood for the current 

chain position, likelihoodFSC is the likelihood for the first stage candidate, and 

likelihoodSSC is the likelihood for the second stage candidate (each of which would be 

calculated based on a likelihood equation such as Eq. 4.1 or 4.2).  Note that the numerator 

and denominator will both always be greater than zero, because if likelihoodSSC – 

likelihoodFSC < 0 (meaning that likelihoodSSC < likelihoodFSC) then the second stage 

proposal would have been automatically rejected, and if likelihoodCCP – likelihoodFSC < 0 

(meaning that likelihoodFSC > likelhoodCCP) then the first stage proposal would have been 

automatically accepted and there would have been no second stage at all. 

 If the second stage candidate is rejected, we could propose a third stage candidate 

based on a further scaling of the proposal distribution, and accept or reject that third stage 
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candidate based on an equation similar to (but more complicated than) Eq. 4.3.  In 

principle, delayed rejection can be carried out for an arbitrary number of stages.  In this 

work we will stick with only two stages.  If the second stage candidate is rejected then the 

current chain position is retained and the process starts over with a new first stage 

candidate. 

 In general delayed rejection can help if the proposal distribution is too narrow or 

too broad, but since it only scales the proposal covariance matrix it cannot do anything to 

address couplings between parameters.  To deal with these potential couplings we need to 

adapt the proposal covariance matrix, not just scale it, and this is the purpose of adaptive 

Metropolis.  When using adaptive Metropolis an initial proposal covariance matrix is 

specified at the beginning of the process.  This matrix is left unchanged for a specified 

number of steps (called the initial non-adaptation period), after which it is adapted for the 

first time.  After this first adaptation, the proposal covariance matrix is adapted after each 

specified interval of chain positions (the intervals are usually of constant length, but this 

is not required).  When the proposal covariance matrix is adapted, the new version is 

given by the equation 

                           (4.4) 

where Cn is the adapted proposal covariance matrix for the interval of chain positions 

starting with the n
th

 position,    is the starting position of the chain,      is the chain 

position just prior to the adaptation, d is the dimensionality of the space being explored 

by the chain (in the case of a calibration, it is the number of parameters being calibrated), 

and         is the d-dimensional identity matrix.  The constant sd is related to the 

dimensionality of the space, and we use the value         ⁄ , as recommended by 

Gelman et al. (1995) and by Haario et al. (2006).  The term sdεId is intended to prevent 

the proposal covariance matrix from ever becoming singular, and it is often not needed.  
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Thus, ε is usually set to zero or to a small positive value.  Finally,                is 

the empirical covariance matrix determined by chain positions             .  The 

adapted covariance matrix is then used for the specified interval of chain positions, after 

which it is adapted again.  This adaptation process allows the appropriate proposal 

covariance matrix to be discovered as a part of the calibration process, and can 

dramatically improve convergence of the chain to the posterior distribution. 

 When both delayed rejection and adaptive Metropolis are implemented together, 

the resulting algorithm is known as Delayed Rejection Adaptive Metropolis (DRAM).  In 

the work presented here, as in the work of Haario et al. (2006), adaptive Metropolis is 

used to adapt the proposal covariance matrix for the first stage candidate.  The covariance 

matrix for the second stage candidate is a scaled version of the first stage proposal 

covariance matrix.  The two improvements can complement one another very well, as 

stated by Haario et al. (2006): 

 

The key feature is that, as pointed out by Green and Mira (2001), DR works better 

if the variance of the proposal is too big at first stages and down scaled at higher 

stages. On the other hand AM recovers well and starts adapting even if the 

variance of the initial proposal is too small (clearly if the variance is too big no 

proposals are accepted and adaptation is almost impossible to get started). Thus, a 

combination of the two, as in DRAM or other variations of it, clearly provides 

protection against both over and under calibrated proposals. 

 

INVERSE PROBLEM IMPLEMENTATION 

A number of codes are involved in the solution of the inverse problem for 

calibration of model parameters relevant to DSMC simulations of hypersonic shocks.  

Substantial effort was involved in making sure these codes all work together in a 

cohesive whole which can be run on large scale computer clusters. 
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A driver program (written in C++ and supplied by PECOS as part of the QUESO 

implementation) gets everything started.  It reads the QUESO input file and initializes the 

various vectors and arrays which will be used during the solution of the inverse problem.  

This driver code has been modified for this work so that chains may be restarted from a 

previous run (this is necessary because of constraints on the length of runs which may be 

submitted to the queue on most computer clusters, including the one used for this work).  

The driver code can read in an adapted proposal covariance matrix which was output 

from a previous run (this modification was performed by Ernesto Prudencio of PECOS).  

It can also read in the current positions for a set of chains based the final chain positions 

output by a previous run.  The conversion of the output of one run to the input for the 

next can easily be automated so that multiple day runs can be set up without the need for 

intervention along the way, provided that a given cluster allows job scripts to be set up 

properly for this task. 

During the course of a run, the driver code sends the likelihood from the previous 

candidate position to the main QUESO code (which is also written in C++), which then 

uses the DRAM algorithm to obtain the parameter values for the next candidate position.  

This candidate position is then sent back to the driver code, which passes the parameters 

to a code which interfaces the C++ and Fortran 95 parts of this process.  The parameter 

values are then received by another interface code (written in Fortran 95) which is used to 

integrate MCMC with the DSMC code.  This MCMC/DSMC interface code reads in 

additional input files which provide information on the scenario, the calibration data, and 

the specific parameters being calibrated.  This information, along with the parameter 

values, is then passed to the DSMC code.  The DSMC code runs the simulation for the 

chosen scenario with the given parameter values.  The results of the simulation are then 

returned to the MCMC/DSMC interface code, which compares the simulation results 
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with the calibration data (by means of a likelihood equation) and returns a likelihood to 

the driver code (via the C++/Fortran 95 interface code).  This likelihood is then sent to 

QUESO and the process starts over.  A flowchart for this process is shown in Figure 4.2. 

 

 

Figure 4.2. Flowchart for the interaction of the various codes involved in the solution of 

the inverse problem.  Yellow and green boxes are codes supplied by PECOS 

(which in some cases I have modified slightly) and blue boxes are codes 

which I have written.  The arrows indicate the type of information passed 

between the codes and the direction in which that information is passed. 

 Upon completion of a calibration with the codes described above, we are left with 

a list of chain positions from one or more chains.  At each chain position we have values 
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for all of the parameters which we are attempting to calibrate.  In order to convert this list 

of chain positions into a set of posterior PDFs for the parameters we use kernel density 

estimation.  We use KDE in the same way as it was used in Chapter 3 to estimate the 1D 

marginal PDFs.  Now instead of values for a set of scalar QoIs and a set of parameters at 

each position in parameter space, we have only the positions in parameter space and the 

corresponding parameter values.  We calculate 1D, marginal PDFs only for the 

parameters, not for any QoI.  We once again use hopt, as given by Eq. 3.6, for the width of 

the Gaussian kernel in our KDE method.  When estimating posterior PDFs based on the 

list of chain positions, it is advisable to discard the early portion of each chain, since this 

portion of the chain will be heavily influenced by the randomly selected starting position.  

Deciding how many positions to discard is an empirical process.  The goal is to make 

sure that enough positions are discarded so that the chain has reached a stationary 

distribution (i.e. it has converged to the posterior distribution for the parameter), while of 

course keeping enough positions to allow the posterior PDF to be estimated well.  The 

discarded portion of the chain is called a burn-in. 

  

EXAMPLE CALIBRATIONS 

 In order to illustrate some aspects of the calibration process described above, we 

will perform a few example calibrations.  These calibrations will be based on synthetic 

data for a hypothetical QoI which depends on four parameters.  As with the examples in 

the previous chapter, this QoI is not intended to represent any physical quantity relevant 

to hypersonic shocks, it is simply an example for illustrative purposes.  The equation for 

the QoI is 

                                 
 (4.5)  



 82 

where the four parameters A, B, C, and D are shown in bold.  In this example, each 

parameter has a uniform prior between 0 and 1, and the spatial variable x falls within the 

range 0 < x < 2.  Comparing this QoI with the one used for the first example sensitivity 

analysis (Eq. 3.5), we have simply added an extra parameter (parameter D) which affects 

the speed of the exponential decline.  This was done in order to increase the coupling 

between the parameters and thus make the calibration slightly more challenging.  The 

value at the center of the uniform prior for each parameter is considered to be the nominal 

value for that parameter (i.e. all parameters have a nominal value of 0.5).   

The QoI(x) profile for the case with all parameters at their nominal values is 

shown in Figure 4.3.  We will use this profile as our synthetic data for most of the 

example calibrations.  When performing a calibration, we must specify an uncertainty for 

our data.  Of course, in this case we are absolutely certain that the data is correct since we 

generate it from a simple equation, and we are sure that there is no model uncertainty (i.e. 

we are sure that our model can reproduce the data) because the data came from our model 

in the first place.  However, the MCMC algorithm requires a measure of uncertainty for 

use in the likelihood equation (Eq. 4.2).  This is not only a mathematical constraint, it is 

also a practical one.  If the uncertainty were truly zero, then the likelihood would be 

exactly zero for any set of parameters which produces a QoI(x) profile which does not 

exactly match the data.  There would be no way (within the context of a likelihood 

equation) to distinguish sets of parameters which produce results which are close (but not 

exactly equal) to the synthetic data and those which produce results which are very 

different from the synthetic data, and thus the whole calibration process would fall apart.  

With this in mind, since this is a hypothetical example anyway, we simply make up an 

uncertainty for the synthetic data.  In Fig. 4.3 we show 2σ error bounds on the synthetic 

data based on two different assumed uncertainties. 
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Figure 4.3. QoI(x) profile with parameters A, B, C, and D of Eq. 4.5 all set to their 

nominal value of 0.5.  This QoI(x) profile serves as the synthetic data for the 

first set of example calibrations.  Also shown are 2σ error bounds based on 

the assumption that the uncertainty of the synthetic data points is given by 

σ
2
 = 0.0001 (the red curves) or σ

2
 = 0.001 (the blue curves). 
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Figure 4.4. Posterior PDFs for each of the four parameters from Eq. 4.5 based on 

calibration with the synthetic data of Fig. 4.3 using 100 calibration data 

points and the assumption that σ
2
 = 0.0001 for the synthetic data.  The 

calibration is performed with 16 chains of 100,000 positions each, with a 

burn-in period of 20,000 positions for each chain. 

In addition to specifying an uncertainty for the data, we must also decide how 

many discrete data points to use.  QoI(x) as given by Eq. 4.5 is a continuous curve, but 

our likelihood equation (Eq. 4.2) is set up to deal with vectors of data points and model 

results.  Also, when using DSMC or another computational method we will always have 

model results at a set of discrete points, and most forms of experimental data will usually 
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be available only in discrete form.  Therefore, for our synthetic data and our model output 

we use the value of QoI(x) at a set of uniformly spaced x-positions.  We treat the data 

points as independent of one another, which is of course not true in reality, but this is an 

assumption which is frequently made when performing calibrations (as discussed in 

Chapter 1). 

With the above issues addressed, we can now perform a calibration.  For the first 

calibration we use 16 chains of 100,000 positions each, with a burn-in of 20,000 positions 

for each chain.  In Figure 4.4 we show the posterior PDFs for the parameters which are 

obtained from this calibration.  We see that all of the posterior distributions are centered 

at the value of 0.5, which is as expected since the synthetic data is based on the QoI(x) 

profile with all the parameters set equal to 0.5.  The distributions all appear to be 

Gaussian, which is also not surprising since we are using a Gaussian likelihood function 

and even with the coupling between parameters this is still a very simple model.  The 

width of the distribution is different for each of the posterior PDFs, again as expected.  It 

is clear from Eq. 4.5 that parameter D will have a very strong influence on the QoI, since 

it controls the rate of exponential decay.  In general, parameters which more strongly 

affect the QoI will usually have narrower posterior distributions (i.e. they will be better 

constrained) when compared with parameters which have a less significant effect on the 

QoI, but this can be altered by couplings between the parameters.  The dominant effect of 

parameter A on QoI(x) in the region where 0 < x < 1 allows this parameter to be 

calibrated more precisely than parameters B and C (i.e. the posterior PDF for parameter 

A is narrower than those for parameters B and C), because the latter two parameters have 

their greatest effect on the QoI at larger values of x, and thus their influences on the QoI 

compete with one another.  When more than one parameter has a similar effect on the 

QoI in a given region it is usually more difficult to calibrate them both precisely.  
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Furthermore, since parameter D also becomes more important at larger values of x, the 

impact of parameters B and C on the QoI is coupled with the much stronger impact of 

parameter D, which serves to further broaden the PDFs for B and C (and for D as well, 

but this is less noticeable because D has such a dominant influence at larger values of x 

that it can be calibrated very precisely). 

In Figure 4.5 we demonstrate the reason for using a burn-in.  The posterior PDF 

for parameter D (based on the same calibration as in Fig. 4.4) is shown with an expanded 

vertical scale to emphasize the tails of the distribution.  The red curve is the posterior 

PDF calculated based on all 100,000 positions for each chain, the blue curve is the 

posterior PDF from Fig 4.4 (with a burn-in of 20,000 positions for each chain), and the 

green symbols are for the posterior calculated with a burn-in of 60,000 positions for each 

chain.  The red curve is clearly not stationary and is influenced by the starting positions 

of the chains, while the blue curve and the green symbols are stationary and show that the 

chain is converged, since the posterior based on the final 40,000 positions of each chain 

is indistinguishable from the posterior based on the final 80,000 positions of each chain.  

In fact, symbols were only used because the green curve was otherwise completely 

obscured by the blue curve. 

In Figure 4.6 we examine the effect of changing the specified uncertainty of the 

synthetic data.  The figure shows posterior PDFs for two of the parameters.  The solid 

lines are from the original calibration, with σ
2
 = 0.0001.  The dashed lines are from a 

second calibration, once again using 16 chains of 100,000 positions each with a 20,000 

position burn-in, and again using 100 synthetic data points, but this time with a specified 

uncertainty which is ten times larger (σ
2
 = 0.001).  As expected, the posterior PDFs are 

significantly broader when the specified uncertainty on the data is larger. 
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Figure 4.5. Posterior PDF for parameter D of Eq. 4.5 (zoomed in to show the tails of the 

distribution) based on the same set of chains as Fig. 4.4.  The posterior PDF 

based on all 100,000 of the chain positions is shown in red.  A burn-in 

period of 20,000 chain positions is used (i.e. the first 20,000 positions of 

each chain are discarded) when calculating the posterior PDF shown in blue, 

and a burn-in period of 60,000 chain positions is used when calculating the 

posterior shown with green symbols. 

The number of discrete data points used in the likelihood equation can also affect 

the posterior PDFs.  In Figure 4.7 posterior PDFs are shown for two of the parameters, 

with the solid lines coming from the calibration shown in Fig. 4.4 and the dashed lines 
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based on a second calibration.  This second calibration uses the same number of chains 

and positions per chain, the same burn-in period, and the same specified uncertainty on 

the synthetic data, but only 20 discrete data points are used for the calibration.  The 

posterior PDFs are significantly broader when the calibration is performed using only 20 

data points.  This occurs because by choosing to use Eq. 4.2 for the likelihood we have 

treated the data points as independent of one another (i.e. they each provide a completely 

new piece of information), and thus having 100 data points can allow us to calibrate the 

parameters much more precisely than we could with only 20 data points (since we have 

100 pieces of information instead of only 20).  In a practical case, if we are going to 

assume that the data points are independent we should be sure that each data point 

provides at least some new information. 

All of the calibrations thus far have been based on the same synthetic data, and 

this data was provided by the model with all parameters set to their nominal values.  In 

our simple example all the parameters have the same range and the same nominal value, 

and we would like to confirm that we could calibrate the parameters even if our nominal 

values turned out to be incorrect (i.e. the peak of the posterior PDF for one or more of the 

parameters did not correspond to the nominal value for that parameter).  We still need 

synthetic data generated from our model, but this time the synthetic data points will come 

from the QoI(x) profile when A, B, C, and D are equal to 0.3, 0.7, 0.4, and 0.6, 

respectively.  This synthetic data is shown in Figure 4.8.  We carry out a calibration using 

100 data points from this curve with a specified data uncertainty of σ
2
 = 0.0001 (2σ error 

bars based on this uncertainty are also included in Fig. 4.8).  The calibration once again 

used 16 chains of 100,000 positions each and a 20,000 position burn in, and the posterior 

PDFs for the parameters are shown in Figure 4.9.  The same trends are seen in these 

PDFs as were seen in the posterior PDFs of Fig. 4.4, except this time the PDFs are not all 
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centered at the same location (as expected).  The posterior PDF for each parameter has its 

peak at the parameter value which was used to generate the synthetic data, thus indicating 

that the synthetic data calibration was successful. 

 

Figure 4.6. Posterior PDFs for two of the parameters from Eq. 4.5 based on two 

different calibrations with the synthetic data of Fig 4.3.  The same 100 

synthetic data points are used for both calibrations, but the uncertainty 

assumed for the synthetic data is different in each calibration.  The 

calibrations both use 16 chains of 100,000 positions each, with a burn-in 

period of 20,000 chain positions. 
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Figure 4.7. Posterior PDFs for two of the parameters from Eq. 4.5, based on two 

different calibrations with the synthetic data of Fig. 4.3.  The same 

uncertainty is assumed for the synthetic data points in both calibrations, but 

the first calibration uses 100 synthetic data points and the second uses 20.  

The calibrations both use 16 chains of 100,000 positions each, with a burn-

in period of 20,000 chain positions. 
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Figure 4.8. QoI(x) profile with parameters A, B, C, and D of Eq. 4.5 set to 0.3, 0.7, 0.4, 

and 0.6, respectively.  This QoI(x) profile serves as the synthetic data for the 

final example calibration.  Also shown are 2σ error bounds based on the 

assumption that the uncertainty of the synthetic data points is given by σ
2
 = 

0.0001. 
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Figure 4.9. Posterior PDFs for each of the four parameters from Eq. 4.5 based on 

calibration with the synthetic data of Fig. 4.8 using 100 calibration data 

points and the assumption that σ
2
 = 0.0001 for the synthetic data.  The 

calibration is performed with 16 chains of 100,000 positions each, with a 

burn-in period of 20,000 positions for each chain. 
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Chapter 5:  0D Relaxation Sensitivity Analysis 

OVERVIEW 

With all of the algorithms and codes in place, we can now begin analyzing DSMC 

simulations relevant to hypersonic shocks.  We will examine two types of scenario in this 

work; the first of these is a 0D relaxation from an initial high temperature state and the 

second is a 1D hypersonic shock.  This chapter will cover the 0D relaxation scenario.  

The scenario will be described and results will be given for simulations with the nominal 

values for collision parameters and reaction rates (which were given in Chapter 2).  Next, 

we identify the full set of parameters to be calibrated and establish the boundaries of a 

uniform prior distribution for each parameter.  We will then discuss the Monte Carlo 

sampling of the parameter space and the sensitivity analyses based on this sampling. 

 

SCENARIO 

While it can be an interesting physical problem in its own right, we are interested 

in this scenario primarily because with the proper initial conditions a 0D relaxation can in 

some ways serve as a substitute for a 1D shock in the sensitivity analysis and calibration 

process.  A 0D relaxation is less computationally expensive to simulate when compared 

to a 1D shock (although the relaxation can still take substantial computational time, 

especially if a low-noise result is needed), and thus it provides a good opportunity to 

make use of our analysis methods without waiting multiple days or even weeks for runs 

to be completed. 

In the scenario we will use here, we initialize a 0D box with synthetic air (79% 

N2, 21% O2) with a bulk number density of 1.0×10
23

 #/m
3
.  This scenario is intended as a 

substitute for a hypersonic shock at ~8 km/s.  Based on the assumption that in a shock the 
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translational mode equilibrates much faster than the internal modes, the initial 

translational temperature is set to ~50,000 K while the rotational and vibrational 

temperatures start at 300 K.  When referring to this scenario as a substitute for a 1D 

shock we do not mean that the simulation results mirror those of a 1D shock, we only 

mean that we believe simulation results from this scenario may be sensitive to many of 

the same parameters which would have a strong effect on the results of a 1D shock 

simulation. 

 In order to explore the chosen scenario further, a relaxation was performed with 

the nominal values of all physical parameters (i.e. with the values listed in Table 5.1 for 

collision parameters and the values listed in Table 5.2 for reaction rate parameters).  

Density profiles from this relaxation are shown in Figure 5.1.  The bulk density is 

constant throughout the run (mass is conserved, and no new particles leave or enter the 

box) and is therefore not shown.  N2 and O2 density both drop rapidly near the beginning 

of the relaxation, due primarily to dissociation reactions, although exchange reactions 

also play a role.  Virtually all of the O2 ends up dissociated less than a fourth of the way 

through the simulation, but for this set of initial conditions more than half of the initial N2 

density remains even at the end of the simulation.  N and O density both increase rapidly 

early in the relaxation and a substantial amount of NO is also formed by the exchange 

reactions.   

The reactions which dissociate the N2 and O2 are endothermic and thus a good 

deal of translational thermal kinetic energy is converted to chemical potential energy, 

leading to a rapid drop in the translational temperature.  This drop is even more rapid 

because at the same time as the chemical equilibration, thermal equilibration is also 

occurring and large amounts of translational thermal kinetic energy are transferred to the 

internal energy modes (rotation and vibration).  This can be seen in Figure 5.2, which 



 95 

shows profiles for the translational, rotational, and vibrational temperatures of N2.  The 

translational temperature of N2 drops rapidly while the rotational and vibrational 

temperatures rise quickly from their initial value of 300 K.  Thermal equilibrium is 

reached before chemical equilibrium.  In fact, even at the end of the simulation the 

densities are still changing slightly; we are interested in the strongly non-equilibrium 

early part of the relaxation, and thus there is no need for us to continue the simulation all 

the way to equilibrium.  As thermal equilibrium is reached, the rotational and vibrational 

temperatures stop rising, reach a peak, and then begin dropping along with the 

translational temperature as thermal energy continues to be lost to chemical potential 

energy due to the ongoing dissociation reactions.  As the temperature continues to drop 

the important dissociation reaction rates drop and thus the temperature drop slows, and 

the densities and temperatures eventually asymptote toward equilibrium. 

 

PARAMETERS 

 We will examine sensitivities to a large set of parameters relating to interactions 

(elastic collisions, inelastic collisions, and chemical reactions) between particles in 

DSMC simulations.  The first group of parameters to be examined is the set of pre-

exponential constants in the Arrhenius-type rate equations for the various reactions.  We 

do not include the activation energy (EA) or the temperature exponent (η) in the 

sensitivity analysis. In the case of EA, this is because EA is considered reasonably well 

known for diatomic species, at least in comparison to the uncertainties in the other 

Arrhenius rate parameters. We exclude η because the effects of Λ and η on the reaction 

rates are very strongly coupled.  The reaction rate parameters available in the literature 

vary greatly and these parameters are considered highly uncertain at high temperatures 
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such as those in our scenario.  Thus, we will allow the parameters to take on values over a 

range of two orders of magnitude.  The lower limit for each pre-exponential constant will 

be 0.1Λnom and the upper limit will be 10Λnom.  In order to sample this two-order of 

magnitude range properly, we will actually sample the parameter log10Λ, which will have 

a uniform prior over the range from log10Λnom − 1 to log10Λnom + 1.  Table 5.1 contains 

the full list of reaction parameters used in this work, along with the limits of the uniform 

prior and the nominal value for each parameter. 

 

  

Figure 5.1: Evolution of the density profiles for all five species during a relaxation from 

an initial state with 79% N2 and 21% O2.  Initial translational temperature is 

~50,000 K while initial rotational and vibrational temperatures are 300 K. 
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Figure 5.2: Evolution of the translational, rotational, and vibrational temperatures for N2 

during a relaxation from an initial state with 79% N2 and 21% O2.  Initial 

translational temperature is ~50,000 K while initial rotational and 

vibrational temperatures are 300 K. 
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for higher temperatures is questionable, they are nonetheless much less uncertain than the 

reaction rate parameters.  Therefore, we do not use order of magnitude uncertainties for 

these parameters.  Instead, the lower limit for the uniform prior for a given reference 

diameter is taken to be one half of the nominal value for that reference diameter, and the 

upper limit is taken to be 1.5 times the nominal value.  This set of parameters is listed in 

Table 5.2. 

 The third group of parameters is related to inelastic collisions.  As discussed in 

Chapter 2, we use a constant rotational collision number (ZR) for each species.  We allow 

ZR to vary over a two order of magnitude range, and thus actually check sensitivity to the 

parameter log10ZR.  This parameter has a uniform prior over the range from 0 to 2 (i.e. 

from ZR = 1 to ZR = 100).  The next three parameters are the values of log10ZR for the 

three diatomic species.  We used a nominal value of 3 for ZR for all three diatomic 

species when doing the simulations shown in Figs. 5.1 and 5.2, so for log10ZR the 

nominal value of the parameter is not at the center of the uniform prior.  This prior was 

chosen in order to examine a two order of magnitude range of ZR, and values of ZR < 1 

are not physically meaningful.  For a species with ZR = 1, every collision involving that 

species will involve a redistribution between the rotational and translational modes, and it 

is not possible with our DSMC implementation to transfer energy to or from the 

rotational mode any more often than this.  For most parameters, we use the nominal value 

to set the center of the prior, but aside from this the nominal value of a parameter plays 

no direct role in the sensitivity analysis, only the limits of the prior are important.  Once 

those limits have been chosen, whether or not the nominal value is at the center of the 

prior makes no difference. 

We use a collision-temperature dependent vibrational collision number (ZV) 

which is calculated based on Eq. 2.1 (repeated here for convenience) 
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   ⁄  ⁄ . (2.1) 

We include the values of C1 for the three diatomic species as parameters 36-38 in our 

sensitivity analysis, and thus we remain consistent with our choice to check sensitivity to 

constants which affect the given equation linearly (as we did when choosing Λ and dref in 

the equations for the Arrhenius reaction rate and the VHS collision model, respectively) 

rather than constants which are in exponential terms.  Since the uncertainty in C1 is large 

for high temperature applications we will once again use a prior which spans two orders 

of magnitude, and thus we will actually check sensitivity to the parameter log10C1.  The 

range of the uniform prior will be from log10C1,nom − 1 to log10C1,nom + 1.  Parameters 33-

38 are listed in Table 5.2. 

 The final parameter for our sensitivity analysis is the ratio of real to simulated 

particles, commonly called Fnum in the DSMC community.  This is a numerical 

parameter rather than a physical one.  We include this parameter in order to demonstrate 

both that our sensitivity analysis results are unaffected by DSMC stochastic noise and 

that we have sufficient simulated particles to accurately simulate the physics.  Due to the 

fact that our scenario is a 0D relaxation there are no numerical parameters related to 

spatial grid resolution, and thus there are only two numerical parameters to consider, with 

Fnum being the most important.  The other numerical parameter is the time step, but due 

to the fact that all of the work is done in the DSMC collision/reaction step, the 

computational time required per time step scales almost linearly with the length of the 

time step.  Therefore, without incurring significant additional computational expense, we 

can use a time step which is small enough to leave no doubt that our results are 

unaffected by this parameter.  With this in mind, if we can show that Fnum has negligible 

effect on the simulation results (for values of Fnum within an appropriate range) then we 

can show that our sensitivity analysis results are independent of numerical parameters.  
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An appropriate range for this parameter was chosen empirically based on examination of 

the noise level present in simulations run with various values of Fnum.  In order to be 

sure that we are numerically converged we allow Fnum to vary over an order of 

magnitude, and so we actually check sensitivity to log10Fnum.  The limits of the prior and 

the nominal value for Fnum are given in Table 5.2. 

Table 5.1: The first seventeen parameters for the 0D relaxation sensitivity analysis.  

These parameters correspond to the reactions which are important for 5-

species air.  For each reaction, the parameter of interest is log10Λ, where Λ 

is the pre-exponential constant in the Arrhenius rate equation (Eq. 2.2) for 

the forward reaction.  Nominal Arrhenius forward rate parameters are from 

Gupta et al. (1989), and backward rate parameters are based on a matching 

with the equilibrium constant over a range of temperatures.  Throughout the 

sensitivity analysis, the ratio of forward to backward rate for a given 

reaction is kept constant, since these ratios should be fixed by the 

equilibrium constant. 

# Parameter 
Prior Distribution Limits 

Nominal Value 
Minimum Maximum 

1 log10Λ (2N2 ⇄ 2N + N2) -13.10 -11.10 -12.10 

2 log10Λ (N2 + N ⇄ 3N) -8.16 -6.16 -7.16 

3 log10Λ (N2 + O2 ⇄ 2N + O2) -13.50 -11.50 -12.50 

4 log10Λ (N2 + O ⇄ 2N + O) -13.50 -11.50 -12.50 

5 log10Λ (N2 + NO ⇄ 2N + NO) -13.50 -11.50 -12.50 

6 log10Λ (O2 + N2 ⇄ 2O + N2) -11.92 -9.92 -10.92 

7 log10Λ (O2 + N ⇄ 2O + N) -12.22 -10.22 -11.22 

8 log10Λ (2O2 ⇄ 2O + O2) -11.27 -9.27 -10.27 

9 log10Λ (O2 + O ⇄ 3O) -10.82 -8.82 -9.82 

10 log10Λ (O2 + NO ⇄ 2O + NO) -12.22 -10.22 -11.22 

11 log10Λ (NO + N2 ⇄ N + O + N2) -10.18 -8.18 -9.18 

12 log10Λ (NO + N ⇄ 2N + O) -8.88 -6.88 -7.88 

13 log10Λ (NO + O2 ⇄ N + O + O2) -10.18 -8.18 -9.18 

14 log10Λ (NO + O ⇄ N + 2O) -8.88 -6.88 -7.88 

15 log10Λ (2NO ⇄ N + O + NO) -8.88 -6.88 -7.88 

16 log10Λ (N2 + O ⇄ NO + N) -16.95 -14.95 -15.95 

17 log10Λ (NO + O ⇄ O2 + N) -18.80 -16.80 -17.80 
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Table 5.2: The remaining parameters for the 0D relaxation sensitivity analysis.  

Parameters 18-38 are collision parameters for 5-species air.  Nominal values 

of dref were compiled by Ozawa (2008).  Nominal values of C1 (see Eq. 2.1) 

are based on those found in Bird (1994), but have been modified to account 

for the fact that Bird used different values for ω.  The nominal value of 3 

was considered to be a reasonable choice for ZR for all three diatomic 

species (for this parameter the nominal value is not at the center of the 

uniform prior).  The final parameter, Fnum, is the ratio of real to simulated 

particles, and relates to the level of stochastic noise in the simulations. 

# Parameter 
Uniform Prior Distribution 

Nominal Value 
Minimum Maximum 

18 dref (N2-N2) 1.79E-10 5.37E-10 3.58E-10 

19 dref (N2-N) 1.67E-10 5.02E-10 3.35E-10 

20 dref (N2-O2) 1.74E-10 5.21E-10 3.48E-10 

21 dref (N2-N) 1.64E-10 4.91E-10 3.27E-10 

22 dref (N2-NO) 1.75E-10 5.24E-10 3.50E-10 

23 dref (N-N) 1.56E-10 4.67E-10 3.11E-10 

24 dref (N-O2) 1.62E-10 4.86E-10 3.24E-10 

25 dref (N-O) 1.52E-10 4.55E-10 3.04E-10 

26 dref (N-NO) 1.63E-10 4.89E-10 3.26E-10 

27 dref (O2-O2) 1.69E-10 5.06E-10 3.37E-10 

28 dref (O2-O) 1.58E-10 4.75E-10 3.17E-10 

29 dref (O2-NO) 1.70E-10 5.09E-10 3.39E-10 

30 dref (O-O) 1.48E-10 4.44E-10 2.96E-10 

31 dref (O-NO) 1.59E-10 4.78E-10 3.19E-10 

32 dref (NO-NO) 1.71E-10 5.12E-10 3.41E-10 

33 log10ZR (N2) 0.0 2.0 0.48 

34 log10ZR (O2) 0.0 2.0 0.48 

35 log10ZR (NO) 0.0 2.0 0.48 

36 log10C1 (N2) -0.3 1.7 0.7 

37 log10C1 (O2) 0.4 2.4 1.4 

38 log10C1 (NO) -0.3 1.7 0.7 

39 log10Fnum 14.0 15.0 14.5 
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QUANTITY OF INTEREST 

We must now select a quantity of interest (QoI) for this scenario.  In this work, we 

are attempting to provide a framework for obtaining improved calibrations for parameters 

which are relevant to DSMC simulations of hypersonic shocks.  Therefore, we have two 

constraints on our QoI.  First, if possible, our QoI should be measurable by experiment.  

At the very least, our QoI should be closely related to some quantity which is 

experimentally observable.  This is desired so that the QoI can be used for future 

parameter calibrations.  The second requirement for our QoI is that calibrations based on 

it must inform at least some of the parameters we wish to calibrate, and thus we must 

choose a QoI which is sensitive to those parameters.  Of course, we may not be able to 

find a QoI which is sensitive to all of the parameters we wish to calibrate, and which is 

also related directly to experimental data, and in that case we will need to pick the one 

that informs as many of the parameters we most wish to calibrate as possible. 

There is a further constraint on our current QoI choices, however, which is 

imposed by the physical models which have been implemented in our code.  We do not 

yet include modeling of ionization or electronic excitation, and we have not yet coupled 

our code with a suitable radiation solver.  Radiation, ionization, and electronic excitation 

do not play a major role in the thermochemistry for a 1D shock at ~8 km/s (or for the 0D 

relaxation scenario in this chapter, which serves as a substitute for an ~8 km/s shock), 

and therefore we can correctly simulate the dominant physics of the scenarios we 

examine in this work, but we cannot generate output which can be compared with 

experimental radiation data. 

With all of the above in mind, and based on the results of a past analysis of 

various options for the QoI (Strand and Goldstein, 2011), we will use the mass density of 

NO as the quantity of interest.  This QoI will actually be a vector which represents ρNO at 
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various discrete points in time (as discussed for a hypothetical QoI in Chapter 3).  When 

shown in figures, these points will be displayed as part of a continuous line, but the actual 

QoI is a vector composed of values at discrete points.  Each discrete point will be viewed 

as a separate, scalar QoI when calculating r
2
 and the mutual information.  The sensitivity 

of ρNO to the various parameters can then be examined as a function of time over the 

course of the relaxation, which can provide valuable insight.  In order to obtain an overall 

value of sensitivity for each parameter, we can appropriately integrate the sensitivities 

over all of the individual scalar QoIs.  A schematic showing the definition of the QoI is 

shown in Figure 5.3. 

 

 

Figure 5.3. Schematic showing the way in which the ρNO vector QoI is broken into 

individual scalar QoIs during the sensitivity analysis. 
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Now that we have identified ρNO as our QoI, we briefly examine some of the 

reaction rates which we anticipate will have a strong effect on this QoI.  Figure 5.4 shows 

six reaction rates as a function of time over the course of the relaxation, for a simulation 

run with the nominal values of all parameters.  The first two are dissociation reactions 

which consume NO.  The corresponding recombination reaction rates are very low and 

are not shown; the recombination rates do not balance the dissociation rates until very 

late times when the set of particles in the box approaches chemical equilibrium.  Both of 

these dissociation rates peak at early times when the bulk temperature is high.  The next 

two profiles are the forward and backward rates for the exchange reaction 

N2 + O ⇄ NO + N.  The forward reaction (which produces NO) peaks very early, and the 

backward reaction peaks slightly later.  They reach equilibrium with one another less than 

a quarter of the way through the run, and after this point this reaction has no further effect 

on ρNO.  The final two profiles are the forward and backward rates of the reaction 

NO + O ⇄ O2 + N.  It is actually the backward reaction which creates NO (we have 

defined the forward reaction as the endothermic reaction throughout this work).  This 

reaction is responsible for most of the NO which is present in the early parts of the 

relaxation, since the backward (NO creating) rate is much higher than the forward (NO 

destroying) rate.  Like the other exchange reaction, the forward and backward rates of 

this reaction reach equilibrium less than a quarter of the way through the relaxation, and 

from that point forward NO is slowly removed by the dissociation reactions until those 

finally come into equilibrium with their corresponding recombination reactions very late 

in the relaxation.  Note that although these reactions are responsible for the majority of 

the creation and destruction of NO during the relaxation (at least for a simulation run 

with the nominal values of all parameters), other reactions still have a strong effect on 
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ρNO, because those reactions (such as dissociation of N2 and O2) will affect the bulk 

temperature and will thus affect the rates for the reactions shown in Fig. 5.4. 

 

 

Figure 5.4: Evolution of the reaction rates for six reactions which directly affect ρNO 

during a relaxation from an initial state with 79% N2 and 21% O2.  Initial 

translational temperature is ~50,000 K while initial rotational and 

vibrational temperatures are 300 K. 
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Carlo sampling of the parameter space.  This sampling can be quite time consuming, but 

fortunately we can use the same data set for both methods.   

The dataset for the 0D relaxation sensitivity analysis consists of 20,000 runs of 

the DSMC code, each at a different point in the 39-dimensional parameter space we are 

exploring.  Before each run, the sensitivity analysis driver code performs a random 

number draw to determine a value for each of the 39 parameters, and these values are 

then sent to the DSMC code.  When the DSMC code makes use of the first 17 parameters 

(the pre-exponential constants in the Arrhenius rate equations for the 17 reactions) the 

ratios between the pre-exponential constants for the forward and backward rate of each 

reaction are kept constant (so if, based on the random number draw, Λ for the forward 

rate of a given reaction is twice the nominal value from Table 5.2, then Λ for the 

backward rate is also double the nominal value).  After each run, data for the QoI are 

output at a set of discrete points in time during the relaxation, and as mentioned 

previously, each of these points will be treated as an individual, scalar QoI. 

The choice to use 20,000 Monte Carlo sample points was made based on past 

experience which gives us a good idea of how many sample points are needed for a 

proper sensitivity analysis.  We will demonstrate later in this chapter that 20,000 sample 

points in parameter space is sufficient to accurately characterize the sensitivities we wish 

to examine. 

In Figure 5.5 we show profiles of ρNO from simulations run at ten random points 

in the parameter space.  The dramatic differences in these profiles demonstrate the large 

effect the values of the parameters can have on the QoI.  Note that if they are followed far 

enough in time, all of these profiles will eventually reach the same equilibrium state (this 

has been verified for our code in the past, while implementing and testing the chemistry). 
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Figure 5.5: Profiles of ρNO vs. time for the same 0D relaxation scenario as shown in Fig. 

5.1.  Each profile comes from a simulation with a set of parameters 

corresponding to a different point in parameter space. 
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mutual information) are plotted as a function of time for the six most sensitive 

parameters.  These six parameters are the values of log10Λ for the dissociation reactions 

N2 + N ⇄ 3N, O2 + O ⇄ 3O, NO + N ⇄ 2N + O and NO + O ⇄ N + 2O, and the values 

of log10Λ for the exchange reactions.  When comparing sensitivities measured with r
2
 to 

those measured with mutual information note that only the shapes of the curves and 

qualitative trends can be compared; there is no reason to expect that the magnitudes will 

agree between the two sensitivity measures.  Therefore, the axis scales have been chosen 

so that the highest peaks are roughly aligned.  As discussed in Chapter 3, even the 

qualitative trends may differ, because the mutual information will capture non-linear 

correlations that r
2
 may miss and also because the two measures respond differently to 

highly scattered data points.  When we make comparisons between the two measures in 

this section, we are doing so primarily in order to identify potential features of the 

scatterplots which may be worth considering in more detail. 

A number of interesting things are apparent in Fig. 5.6, and they can be more fully 

examined with the use of scatterplots.  The scatterplots in Figures 5.7 – 5.12 are of the 

same type as the scatterplots used in Chapter 3 to illustrate the sensitivity analysis 

methods.  The values of a parameter are on the x-axis and the values of a particular scalar 

QoI (in this case ρNO at a particular point in time) are on the y-axis, and the entire dataset 

is projected onto this two dimensional space.  The values for the given parameter and the 

given scalar QoI from all of the 20,000 simulations are shown in the scatterplot.  We will 

discuss the sensitivity vs. time profiles and selected scatterplots for each of the six 

parameters mentioned above. 

The reaction N2 + N ⇄ 3N does not directly produce or destroy NO, of course, 

but it strongly affects the bulk temperature of the gas and thus it influences all of the 

other reaction rates.  Two interesting features can be observed in the profiles of 
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sensitivity vs. time for this reaction.  First, the profiles are nearly zero in the early part of 

the relaxation.  The degree of chemical nonequilibrium is greatest in the early part of the 

shock, and in this region ρNO is most strongly affected by the NO dissociation reactions 

NO + N ⇄ 2N + O and NO + O ⇄ N + 2O and by the exchange reactions, since these are 

the primary reactions which actually create and destroy NO.  After the backward and 

forward rates of the exchange reactions reach equilibrium and the NO dissociation 

reactions slow down, however, the bulk temperature begins to have a strong influence on 

the speed at which the chemical composition approaches equilibrium, and at these later 

times N2 + N ⇄ 3N becomes one of the most sensitive parameters.  The second feature of 

interest concerning this reaction is the fact that the correlation coefficient is very low 

relative to the mutual information over the entire sensitivity vs. time curve.  The reason 

for this can be seen in the scatterplots of Fig. 5.7.  All four scatter plots demonstrate that 

the effect of this parameter on the QoI is quite non-linear.  Moving from left to right in 

any one of the scatterplots (from low to high values of the parameter), it is apparent that 

on the whole there is a negative correlation between this reaction rate and ρNO (as this 

reaction rate increases, ρNO at a given point in time decreases for most of the 20,000 

runs).  However, superimposed on this trend is the fact that the distribution of values of 

ρNO at each given time actually broadens at higher values of this reaction rate.  This is 

most likely due to the fact that as the rate of N2 dissociation increases the bulk 

temperature generally decreases more quickly, which leads in general to lower rates for 

the exchange reactions which produce NO.  At the same time, a higher rate of N2 

dissociation means that there is more atomic nitrogen available to react with O2 (before 

the O2 has been mostly dissociated) and form NO through the backward portion of the 

exchange reaction NO + O ⇄ O2 + N (which is a high rate reaction early in the 

relaxation, as seen in Fig. 5.4).  Thus, for some combinations of parameter values a high 
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rate for N2 + N ⇄ 3N can actually lead to the highest values for ρNO.  Regardless of the 

reason for this nonlinear relationship, the mutual information captures it much better than 

r
2
, and therefore the mutual information is substantially higher than r

2
 at all times during 

the relaxation. 

The profiles for the reaction O2 + O ⇄ 3O are simpler.  The importance of this 

reaction peaks at relatively early times, and then drops later once almost all of the O2 has 

been dissociated.  At higher rates of this reaction, the temperature of the gas drops more 

quickly and less NO is produced, leading to the negative relationship between this 

parameter and ρNO which is seen in the scatterplots of Fig 5.8. 

 

Figure 5.6. Sensitivities as a function of time for the six most sensitive parameters, all 

of which are from among the reaction rate parameters (parameters 1-17 in 

Table 5.1).  Both r
2
 and the mutual information are shown on the plot for 

each parameter. 
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Figure 5.7. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction N2 + N ⇄ 3N.  

The square of the Pearson correlation coefficient and the mutual information 

are also shown on the plots. 
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a decrease in ρNO since the forward reaction destroys NO and occurs much more 

frequently than the backward (recombination) reaction until very late in the relaxation 

when the composition approaches equilibrium.  This idea is shown to be correct by the 

scatterplots in Figs. 5.9 and 5.10. 

 

 

Figure 5.8. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction O2 + O ⇄ 3O.  

The square of the Pearson correlation coefficient and the mutual information 

are also shown on the plots. 
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Figure 5.9. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction 

NO + N ⇄ 2N + O.  The square of the Pearson correlation coefficient and 

the mutual information are also shown on the plots. 
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5.11.  At an early time there is a clear and obvious positive relationship between this 

parameter and ρNO, and this relationship is easily captured by both r
2
 and the mutual 

information.  At later times, however, the relationship changes and the distribution of ρNO 

is much broader for low values of this parameter than it is for high values.  This is most 

obvious in the lower right scatterplot of Fig. 5.11.  Starting with values of this parameter 

which are slightly below the nominal and moving higher, we see that this parameter no 

longer has any effect on the distribution of ρNO.  At very low values of this parameter, 

however, the distribution of ρNO is clearly broadened.  The reason for this was discussed 

in relation to Fig. 5.4.  After a certain point in time the forward and backward rates of this 

reaction reach equilibrium and at that point this reaction no longer has any effect on the 

QoI.  In general, higher values of the rate coefficient for this parameter (which will result 

in higher rates of both the forward and backward reaction) lead to this equilibrium being 

reached at earlier times.  Lower values of the rate coefficient for this reaction mean that 

this reaction takes longer to reach equilibrium and thus affects ρNO for a longer time 

during the relaxation.  Whether this affect is to decrease or increase ρNO at a given point 

in time, however, depends on the values of other parameters, and therefore the 

distribution of ρNO is broadened for low values of this parameter.  This type of behavior 

cannot be captured by r
2
.  It will be captured by the mutual information because the 

mutual information compares distributions rather than simply looking for linear 

correlations.  Situations like this are the reason the mutual information was employed in 

the first place, because it provides a more sophisticated measure of sensitivity. 

 Finally, we examine the sensitivity vs. time profile for the other exchange 

reaction, NO + O ⇄ O2 + N.  The profile is almost identical for the two measures of 

sensitivity.  It has a sharp peak at early times and then drops fairly quickly and soon 

approaches zero.  The scatterplots in Fig. 5.12 show the strong, positive relationship 
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between this parameter and ρNO at early times, and they also show how the effect of this 

parameter on ρNO becomes negligible at later times.  Since the relationships can be 

reasonably well described by a linear trendline r
2
 is able to capture this sensitivity 

properly. 

 

 

Figure 5.10. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction 

NO + O ⇄ N + 2O.  The square of the Pearson correlation coefficient and 

the mutual information are also shown on the plots. 

log
10

(
NO + O <--> N + 2O

)


N

O
(k

g
/m

3
),

a
t

T
im

e
=

4
E

-7
s

-8.5 -8 -7.5 -7
0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

r
2

= 0.0983
MI = 0.0614

log
10

(
NO + O <--> N + 2O

)


N

O
(k

g
/m

3
),

a
t

T
im

e
=

1
E

-6
s

-8.5 -8 -7.5 -7
0.0E+00

2.0E-04

4.0E-04

6.0E-04

r
2

= 0.1242
MI = 0.0790

log
10

(
NO + O <--> N + 2O

)


N

O
(k

g
/m

3
),

a
t

T
im

e
=

2
E

-6
s

-8.5 -8 -7.5 -7
0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

r
2

= 0.1276
MI = 0.0866

log
10

(
NO + O <--> N + 2O

)


N

O
(k

g
/m

3
),

a
t

T
im

e
=

3
E

-6
s

-8.5 -8 -7.5 -7
0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

r
2

= 0.1289
MI = 0.0890



 116 

 

 

Figure 5.11. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction 

N2 + O ⇄ NO + N.  The square of the Pearson correlation coefficient and 

the mutual information are also shown on the plots. 
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Figure 5.12. Scatterplots showing ρNO (at four discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction 

NO + O ⇄ O2 + N.  The square of the Pearson correlation coefficient and 

the mutual information are also shown on the plots. 
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Figure 5.13. Scatterplots showing ρNO (at two discrete points in time given by the labels 

on the vertical axis in each plot) vs. log10Λ for the reaction 

NO + N ⇄ 2N + O.  The vertical scale is the same for both plots in order to 

show the substantially higher variance of ρNO in the scatterplot on the left, 

despite both r
2
 and the mutual information being higher for the scatterplot 

on the right. 
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that point in time) is explained by that parameter.  The values of r
2
 and the mutual 

information provide no information at all about the magnitude of the variance of the QoI 

at that point in time.  Therefore, when comparing sensitivities of one or more parameters 

at two different points in time, it is frequently the case that while the r
2
 and mutual 

information values may be very similar for the two points, how much the parameter 

actually affects the QoI in an absolute sense may be very different.  The r
2
 and mutual 

information values for the scatterplot shown in the left image of Fig. 5.13 are actually 

lower than the corresponding values for the scatterplot in the right image of Fig. 5.13, but 

the absolute effect of the parameter on the QoI is clearly larger in the left image.  This 

occurs because of the fact that the relaxation starts from a highly non-equilibrium initial 

state and approaches equilibrium over time.  After a sufficient amount of time ρNO will 

reach the same equilibrium regardless of the parameter values chosen for a particular 

simulation.  Therefore, as time passes and the gas approaches equilibrium the parameters 

have a diminishing effect on the value of the ρNO. 

In order to obtain a meaningful overall sensitivity, we need to make use of a 

weighting function before integrating the sensitivities over the length of the relaxation.  

In this work, we have chosen to use the variance of the QoI as the weighting function, so 

the equation for the overall sensitivity (based on the r
2
 measure) to a given parameter is  

                      ∫           
      

 

 
 (5.1)  

where varQoI(t) is the variance of the QoI at a given point in time (calculated from all the 

Monte Carlo samples of the parameter space), and the integration is over the entire length 

of the relaxation.  The same equation is used when mutual information is the measure of 

sensitivity, except in that case r
2
(t) is replaced by MI(t).  The variance of ρNO and the 

integrand of Eq. 5.1 (which we refer to as the variance-weighted sensitivity) are shown as 

functions of time in Figure 5.14 for the six most sensitive parameters.  Figure 5.15 shows 
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the same curves, this time zoomed in on the early part of the relaxation where the 

variance-weighted sensitivities are highest.  In both of these figures, the variance-

weighted sensitivity curves have been normalized by the peak sensitivity (the highest 

sensitivity at any point in the relaxation for any parameter).  This is done separately for 

each measure of sensitivity, so the highest r
2
 based sensitivity at any point in the 

relaxation is set equal to one, and similarly for the mutual information. 

With the definition of the variance-weighted sensitivity established, Eq. 5.1 is 

then used to obtain overall sensitivities, based on r
2
 and the mutual information, for each 

parameter.  The overall sensitivity to each parameter (based on each measure) is 

normalized by the largest value of overall sensitivity (based on that measure), so that the 

most sensitive parameter based on each measure has an overall sensitivity of one.   

The results of these calculations are shown in Figure 5.16.  The reaction 

NO + N ⇄ 2N + O has the greatest influence on ρNO when r
2
 is used as the measure, and 

it is a close second based on mutual information.  The exchange reaction 

N2 + O ⇄ NO + N has the highest overall sensitivity based on the mutual information, 

while it is only the fourth most sensitive based on r
2
.  This difference is due to the 

previously discussed non-linearity of the relationship between this reaction rate and ρNO.  

For most of the other parameters the r
2
 and mutual information based overall sensitivities 

are relatively similar, with the exception of the reaction rate for N2 + N ⇄ 3N, where 

non-linearity of the relationship again leads to significantly higher values for mutual 

information than for r
2
.   The set of the top six most sensitive reactions is the same for 

either measure, and these six are all labeled in Fig. 5.16.  It is unsurprising that four of the 

six reactions result directly in the production or destruction of NO (two NO 

dissociation/recombination reactions and the two exchange reactions).  The other two 

reactions in the top six (N2 + N ⇄ 3N and O2 + O ⇄ 3O) have such a large effect on the 
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temperature and chemical composition during the relaxation that they still have a strong 

effect on ρNO, even though NO is neither a reactant nor a product of either of them. 

 

Figure 5.14. Variance-weighted sensitivities as a function of time for the top six most 

sensitive parameters, all of which are from among the reaction rate 

parameters (parameters 1-17 in Table 5.1).  Sensitivities based on both r
2
 

and the mutual information are shown on the plot for each parameter, and 

the variance of ρNO at each point in time is shown as well.  The variance-

weighted sensitivities are normalized so that the highest sensitivity at any 

point in the relaxation is set equal to one.  This is done separately for r
2
 and 

the mutual information. 
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Figure 5.15. Zoomed-in version of Fig. 5.14, showing in more detail the normalized, 

variance-weighted sensitivities for early times when the variance of ρNO is 

highest. 

Based on these results, the parameters which are suitable for calibration based on 

ρNO as QoI are apparent.  If we had sufficient data with reasonable levels of uncertainty, 

we might hope to calibrate the pre-exponential constants in the Arrhenius rate equations 

for the six reactions labeled in Fig. 5.16.  We would not expect to gain very much 

meaningful information about the other parameters from a calibration based on our 

current QoI. 
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Figure 5.16. Overall, variance-weighted sensitivities for each parameter based on each 

measure of sensitivity.  The overall sensitivities are normalized so that the 

overall sensitivity for the most sensitive parameter is set equal to one.  This 

normalization is done separately for r
2
 and the mutual information, so the 

most sensitive parameter for each measure will have an overall sensitivity of 

one. 

 

CONVERGENCE 

In any numerical study it is important to demonstrate convergence of the results 

before drawing conclusions.  In our work, there are actually two types of convergence 

which must be demonstrated.  We must show that the results are converged with respect 

to the DSMC numerical parameters and we must also show that we have sufficient points 

in our Monte Carlo sensitivity analysis. 

Addressing DSMC convergence first, it is important to note that we are not trying 

to demonstrate that each individual simulation is converged to machine precision; we are 
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results can be considered independent of DSMC numerical parameters.  For this to be the 

case our DSMC simulations will have to be sufficiently well-resolved to allow us to 

capture the relevant physics, but perfect convergence of the individual relaxations is not 

required.  Fortunately, as discussed earlier in the chapter, there are only two DSMC 

numerical parameters for the relaxations, the time step and the ratio of real to simulated 

particles.  Furthermore, the time step can easily be chosen to be small enough (relative to 

the average amount of time between interactions for any given particle) that convergence 

is assured for this parameter.  Thus, we are left with only the ratio of real to simulated 

particles, and we included this parameter in the sensitivity analysis.  In fact, we allowed it 

to vary over a range of an order of magnitude, and even over this wide range we find that 

it has a negligible effect on the QoI relative to the majority of the other parameters.  

Based on r
2
 the ratio of real to simulated particles is the 24

th
 most sensitive parameter.  It 

has an overall sensitivity which is 496 times smaller than that of the most sensitive 

parameter, and 56 times smaller than that of the sixth most sensitive parameter (which is 

the least sensitive parameter we will attempt to calibrate).  Based on the mutual 

information it is the 25
th

 most sensitive parameter, with an overall sensitivity 272 times 

smaller than that of the most sensitive parameter and 65 times smaller than the sixth most 

sensitive parameter.  With this analysis we have shown both that we have sufficient 

particles to resolve the physics and that stochastic noise is not a significant factor.  If the 

physics were not properly resolved for the higher values of the ratio of real to simulated 

particles (when there are fewer simulated particles) we would expect the distribution of 

the QoI to change as the ratio of real to simulated particles decreases (when more 

simulated particles are used), and thus we would see some sensitivity to this parameter.  

If the number of simulated particles was sufficient to simulate the physics but stochastic 

noise was still a major factor, then we would expect to find a fan-shaped distribution like 
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the one discussed in Chapter 3 in the context of an example QoI with a noise related 

parameter (see Figure 3.23).  This type of distribution is not captured properly by r
2
, but 

it was shown in Chapter 3 that it is captured by the mutual information.  Since the 

sensitivity of the QoI to the ratio of real to simulated particles is very low based on either 

measure, we can conclude that we have sufficient simulated particles to resolve the 

physics and that the effect of stochastic noise on the QoI is negligible relative to the 

effects of other parameters. 

We now move on to address the second aspect of convergence.  As discussed 

earlier, our sensitivity analysis method relies on a Monte Carlo sampling of the parameter 

space.  We need to demonstrate that we have sufficient Monte Carlo sample points to 

consider our analysis converged.  In order to demonstrate this, we compare the results of 

our main analysis (with 20,000 Monte Carlo sample points) with results for an analysis 

with just half of the total points.  This second analysis with only 10,000 points is 

conducted in exactly the same way as the main analysis with all 20,000 points.  The 

results from the 10,000 point analysis for variance-weighted r
2
 vs. time during the 

relaxation are compared with the 20,000 point analysis results in Figure 5.17.  The 20,000 

point analysis results are shown with solid lines and the 10,000 point analysis results are 

shown with symbols.  The symbols lie nearly on top of the lines over the entire length of 

the relaxation, even at early times when nonequilibrium is greatest.  Figure 5.18 shows 

the equivalent figure for sensitivities based on the mutual information, and once again the 

results of the 10,000 point analysis match those of the 20,000 point analysis closely.  

Overall sensitivities from the both the 20,000 point analysis and the 10,000 point analysis 

are shown in Fig. 5.19 for both measures of sensitivity.  The results from the 10,000 point 

analysis agree well with those of the 20,000 point analysis, and the top ten parameters 

based on each measure of sensitivity (and their ordering) are the same for both analyses.  
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Based on these results, we conclude that we have sufficient Monte Carlo sample points to 

consider our results converged. 

 

 

Figure 5.17. Variance-weighted sensitivities (based on r
2
) as a function of time for the six 

most sensitive parameters.  Sensitivities are shown for the main analysis 

with all 20,000 Monte Carlo sample points in parameter space (solid lines) 

and also for the analysis with only half of the sample points (symbols). 
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Figure 5.18. Variance-weighted sensitivities (based on the mutual information) as a 

function of time for the six most sensitive parameters.  Sensitivities are 

shown for the main analysis with all 20,000 Monte Carlo sample points in 

parameter space (solid lines) and also for the analysis with only half of the 

sample points (symbols). 
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Figure 5.19. Overall sensitivities (based on both measures of sensitivity) for the main 

analysis with all 20,000 Monte Carlo sample points in parameter space and 

for the analysis with half as many sample points. 
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Chapter 6:  1D Shock Sensitivity Analysis 

OVERVIEW 

After completing our sensitivity analysis for the 0D relaxation and thus 

demonstrating that our techniques are effective for the analysis of scenarios with complex 

physics, we are ready to move on to the more realistic scenario of a 1D hypersonic shock.  

We will first discuss the scenario and show results for a simulation with the nominal 

values of all parameters.  Then, the parameters for this sensitivity analysis will be listed, 

and we will describe the Monte Carlo sampling of the parameter space.  Finally, we will 

use the techniques discussed in Chapters 3 to conduct our sensitivity analysis and then 

present the results.      

 

SCENARIO 

The scenario we will analyze in this chapter is a 1D shock with a shock speed 

(relative to the upstream flow) of ~8000 m/s.  All of the shock simulations in this work 

are performed with the technique described in Chapter 2, which allows us to obtain a 

steady shock profile from an unsteady shock moving through the 1D domain, by means 

of a sample region around the shock which moves at the shock propagation velocity.  See 

Figs. 2.1 and 2.2 for schematics showing the shock sampling technique.  A simulation of 

this scenario was run with the nominal values for all parameters, and some results from 

this run are shown in Figures 6.1 – 6.3. 
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Figure 6.1: Profiles of bulk density and individual species densities across a shock at 

~8000 m/s.  Upstream temperature is 300 K, and number densities for N2 

and O2 are 2.5×10
21

 #/m
3
 and 6.8×10

20
 #/m

3
, respectively. 

PARAMETERS 

 The sensitivity analysis results for the 0D relaxation demonstrated that the 

reaction rate parameters have a much larger effect on the QoI than any of the other 

physical parameters.  With this in mind, and since having fewer parameters makes the 

analysis more manageable, we have decided that for the 1D shock analysis we will only 

include the reaction rate parameters.   
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Figure 6.2: Profiles of O2 and NO densities from Fig. 6.1, with the vertical axis 

rescaled. 

As in the 0D analysis, we will vary one parameter for each of the 17 reactions 

shown in Table 2.2.  As before, the parameters we intend to examine are the pre-
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increase the recombination rate so that the ratio between the two remains constant.  We 

also keep the ratio of the forward and backward rates for the exchange reactions fixed in 

this way.   

 

Figure 6.3: Profiles of translational, rotational, vibrational, and overall temperatures for 

N2 across the shock from Fig. 6.1. 
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magnitude the parameter we will actually examine for each reaction will be log10Λ.  For a 

given reaction, log10Λ will vary over the range from log10Λnom − 1 to log10Λnom + 1, 

where Λnom is the pre-exponential constant for the forward reaction from Table 2.2.  The 

reaction parameters used in the 1D shock sensitivity analysis are listed in Table 6.1 

(which is identical to Table 5.1 for the 0D relaxation sensitivity analysis), along with the 

limits of the uniform prior and the nominal value for each parameter. 

Table 6.1: The parameters for the 1D shock sensitivity analysis.  These parameters 

correspond to the reactions which are important for 5-species air.  For each 

reaction, the parameter of interest is log10Λ, where Λ is the pre-exponential 

constant in the Arrhenius rate equation (Eq. 2.2) for the forward reaction.  

Nominal Arrhenius forward rate parameters are from Gupta et al. (1989), 

and backward rate parameters are based on a matching with the equilibrium 

constant over a range of temperatures.  Throughout the sensitivity analysis, 

the ratio of forward to backward rate for a given reaction is kept constant, 

since these ratios should be fixed by the equilibrium constant. 

# Parameter 
Prior Distribution Limits 

Nominal Value 
Minimum Maximum 

1 log10Λ (2N2 ⇄ 2N + N2) -13.10 -11.10 -12.10 

2 log10Λ (N2 + N ⇄ 3N) -8.16 -6.16 -7.16 

3 log10Λ (N2 + O2 ⇄ 2N + O2) -13.50 -11.50 -12.50 

4 log10Λ (N2 + O ⇄ 2N + O) -13.50 -11.50 -12.50 

5 log10Λ (N2 + NO ⇄ 2N + NO) -13.50 -11.50 -12.50 

6 log10Λ (O2 + N2 ⇄ 2O + N2) -11.92 -9.92 -10.92 

7 log10Λ (O2 + N ⇄ 2O + N) -12.22 -10.22 -11.22 

8 log10Λ (2O2 ⇄ 2O + O2) -11.27 -9.27 -10.27 

9 log10Λ (O2 + O ⇄ 3O) -10.82 -8.82 -9.82 

10 log10Λ (O2 + NO ⇄ 2O + NO) -12.22 -10.22 -11.22 

11 log10Λ (NO + N2 ⇄ N + O + N2) -10.18 -8.18 -9.18 

12 log10Λ (NO + N ⇄ 2N + O) -8.88 -6.88 -7.88 

13 log10Λ (NO + O2 ⇄ N + O + O2) -10.18 -8.18 -9.18 

14 log10Λ (NO + O ⇄ N + 2O) -8.88 -6.88 -7.88 

15 log10Λ (2NO ⇄ N + O + NO) -8.88 -6.88 -7.88 

16 log10Λ (N2 + O ⇄ NO + N) -16.95 -14.95 -15.95 

17 log10Λ (NO + O ⇄ O2 + N) -18.80 -16.80 -17.80 
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QUANTITY OF INTEREST 

We use ρNO as the quantity of interest for this scenario, just as we did for the 0D 

relaxation.  As before, this QoI will actually be a vector, except this time the vector 

represents ρNO at various discrete points in space rather than in time.  Once again, each 

discrete point will be viewed as a separate, scalar QoI when calculating r
2
 and the mutual 

information.  Once the individual analyses for all of the scalar QoIs have been completed, 

the sensitivity of ρNO to the various parameters can then be examined as a function of 

streamwise location in the shock, and we can also appropriately integrate the sensitivities 

over all of the individual scalar QoIs in order to obtain an overall value of sensitivity for 

each parameter.  A schematic showing the definition of the QoI for this scenario is shown 

in Figure 6.4. 

 

Figure 6.4. Schematic showing the way in which the ρNO vector QoI is broken into 

individual scalar QoIs during the sensitivity analysis for the 1D shock. 
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SAMPLING THE PARAMETER SPACE 

When performing the set of simulations which will form our sample of the 

parameter space, we must work within computational limits.  Simulations for the 1D 

shock scenario take an order of magnitude longer than those for the 0D relaxation 

scenario.  There are two reasons why the 1D shocks take so much longer to simulate.  

First, the shock must be allowed to propagate for a substantial period of time before the 

shock profile can be considered self-similar and sampling can begin.  This is not the case 

for the 0D relaxation, where the profiles of density vs. time have their origin at the 

moment the relaxation begins and therefore no computational effort is wasted on a part of 

the simulation that will not actually be directly included in the final results.  The second 

reason has to do with the fact that time and space are not equivalent dimensions.  We are 

interested primarily in non-equilibrium chemistry, which for the 0D case occurs mostly at 

early times near the beginning of the relaxation.  We can therefore cut off the simulations 

well before the relaxation fully reaches equilibrium and save a lot of computational time.  

This is especially true when we are concerned primarily with variance-weighted 

sensitivities, since those become negligible (relative to their peak values) well before the 

relaxation has reached complete equilibrium.  We can cut off the later parts of the 

simulation in this way because the portions of the relaxation which would have come 

later obviously do not exert any influence backward in time which could have an effect 

on the profiles at earlier times.  The situation is different for a 1D shock.  We are once 

again interested in the non-equilibrium chemistry, which is mostly confined to the region 

near the shock front, but in this case we cannot cut off the rest of the profile.  Even if we 

had a method for simulating a purely steady shock (rather than our method of sampling 

from an unsteady shock), we would still have to spend a great deal of computational 

effort simulating parts of the 1D shock profile that we do not care much about.  If we cut 
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off the profile and place our boundary condition unrealistically close to the shock front 

the effect will be felt upstream of the boundary and our profile will be altered everywhere 

downstream of the shock front (everywhere that the flow is subsonic).   

With these limitations in mind, we have had to use a smaller number of Monte 

Carlo samples of the parameter space.  The dataset for the 1D shock sensitivity analysis 

consists of 5600 runs of the DSMC code, each at a different point in the 17-dimensional 

parameter space we are exploring.  Just like for the 0D scenario, before each run the 

sensitivity analysis driver code performs a random number draw to determine log10Λ for 

each of the 17 reactions, and then the pre-exponential constants are sent to the DSMC 

code for each forward reaction.  The pre-exponential constants for the backward rates are 

calculated such that the ratio Λforward/Λbackward remains constant for a given reaction, 

regardless of location in parameter space.  This set of 5600 runs of the DSMC code took 

over 112 hours on 4096 processors (each individual DSMC simulation was performed on 

128 processors, and the runs were done simultaneously in multiple sets), for a total of 

~450,000 CPU hours.  After each run data for the QoI were output at a set of discrete 

points with fixed locations relative to the shock front, and as mentioned previously, each 

of these points will be treated as an individual, scalar QoI. 

Just as we did for the 0D relaxation analysis, we will show later in this chapter 

that 5600 sample points in parameter space are sufficient to accurately characterize the 

sensitivities we wish to examine. 

 

SENSITIVITIES VS. X 

Once we have performed the set of simulations which constitute our sampling of 

the parameter space we can then calculate sensitivities (based on r
2
 and the mutual 
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information) of each scalar QoI to each of the parameters, just as we did for the 0D 

relaxation scenario.  As before, it is useful to show the sensitivities to various parameters 

for all of the scalar QoIs on one plot.  This allows us to see how the sensitivities vary 

with location in the shock.  Profiles for sensitivity vs. x are shown in Figure 6.5 for the 

top five most sensitive parameters. 

The degree of chemical nonequilibrium is greatest in the early part of the shock, 

and in this region ρNO is most strongly affected by the NO dissociation reactions 

NO + N ⇄ 2N + O and NO + O ⇄ N + 2O and by the exchange reactions.  Sensitivity to 

the reaction N2 + N ⇄ 3N peaks slightly later, and this reaction is the most sensitive over 

the remainder of the streamwise domain. As the gas gets closer to equilibrium at large 

values of x, sensitivity to the NO dissociation reaction NO + N ⇄ 2N + O again 

approaches the sensitivity to the reaction N2 + N ⇄ 3N. 

When comparing sensitivities measured with r
2
 to those measured with mutual 

information, it is clear that the shapes of the curves are similar for four of the five 

reactions shown, but there is an important difference between the two measures at some 

streamwise locations for the exchange reaction N2 + O ⇄ NO + N.  In the region around 

x = 0.066 m, the sensitivity based on the mutual information drops to a low but non-

negligible level, while the sensitivity based on r
2
 actually drops to zero before increasing 

again.  This occurs because at the point where r
2
 crosses zero the correlation switches 

from positive to negative (i.e. increasing values of the parameter lead to decreasing 

values of the QoI).  Figure 6.6 examines the reason for this in more detail.  Fig. 6.6 is a 

scatterplot similar to those in Figs. 5.7 – 5.12, with the scalar QoI now being ρNO at the 

location x = 0.066 m and the parameter being log10Λ for the reaction N2 + O ⇄ NO + N.  

This parameter influences the value of the QoI at this location, but the relationship is non-

linear and thus is not captured properly by r
2
.  The mutual information does capture non-
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linear correlations, and for this reason the value of the mutual information at this point is 

non-negligible (although it is still low relative to the mutual information for some of the 

other parameters).  This is another example of a situation where the mutual information is 

superior to r
2
 as a measure of sensitivity. 

 

 

Figure 6.5: Sensitivities as a function of streamwise location for five of the most 

sensitive parameters.  Both r
2
 and the mutual information are shown on the 

plot for each parameter. 
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Figure 6.6: Scatterplot showing ρNO (at x = 0.066 m) vs. log10Λ for the reaction 

N2 + O ⇄ NO + N.  The relationship between log10Λ and ρNO at this location 

in the shock is non-linear. 
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a much more dramatic difference than that shown in Fig. 5.13 (the figure which 

accompanied the discussion of variance-weighting in Chapter 5), and the reason for this 

can be seen in Figure 6.8, which is a plot of the variance of ρNO vs. x.  Comparing this 

figure to the curve for the variance of ρNO vs. time in Fig. 5.14, we see that the variance 

of ρNO drops off much more sharply for the 1D shock scenario than it did for the 0D 

relaxation.  Note that we are not making a direct comparison between profiles of ρNO as a 

function of time in a relaxation and ρNO as a function of x in a shock; we mention that the 

variance of ρNO drops off more dramatically in the profiles from the shock scenario only 

in order to point out the even greater need for variance weighting in this scenario. 

We once again make use of the variance of the QoI as the weighting function, and 

for the 1D shock scenario the equation for the overall sensitivity (based on the r
2
 

measure) to a given parameter is  

                      ∫           
      

 

 
 (6.1)  

where varQoI(x) is the variance of the QoI at a given streamwise location, and the 

integration is over the entire streamwise domain.  When mutual information is the 

measure of sensitivity, r
2
(x) is replaced by MI(x) in Eq. 6.1.  The variance-weighted 

sensitivities are shown as functions of x in Figure 6.9 for the five most sensitive 

parameters.  Figure 6.10 shows the same curves, this time zoomed in on the non-

equilibrium region near the shock front where the variance-weighted sensitivities are 

highest.  In both of these figures, the variance-weighted sensitivity curves have been 

normalized by the peak sensitivity (the highest sensitivity at any point in the shock for 

any parameter).  This is done separately for each measure of sensitivity, so the highest r
2
 

based sensitivity at any point in the shock is set equal to one, and similarly for the mutual 

information. 
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Eq. 6.1 is used to obtain overall sensitivities, based on r
2
 and the mutual 

information, for each parameter.  The overall sensitivity to each parameter (based on each 

measure) is normalized by the largest value of overall sensitivity (based on that measure), 

so that the most sensitive parameter based on each measure has an overall sensitivity of 

one.   

These overall sensitivities are shown in Figure 6.11 for all of the parameters.  The 

reaction NO + N ⇄ 2N + O has the greatest influence on ρNO, regardless of which 

measure of sensitivity is used.  However, other parameters also have a strong effect on 

ρNO.  We choose six because there is a clear break in the data and the seventh highest 

sensitivity is far lower than that for any of the top six.  The set of six most sensitive 

reactions is the same for either measure, and these six are all labeled in Fig. 6.11.  

Furthermore, these are the same six parameters identified in the 0D relaxation analysis, 

which provides some justification for our earlier argument that the 0D relaxation could be 

considered as a substitute scenario for the 1D shock for the purposes of sensitivity 

analysis and parameter calibration.  We can conclude based on these results that these six 

reactions would be appropriate for calibration with ρNO as QoI, regardless of whether the 

0D relaxation scenario or the 1D shock scenario is used. 
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Figure 6.7: Scatterplots showing ρNO at x = 0.0028 m vs. log10Λ for the reaction 

NO + N ⇄ 2N + O (left image) and ρNO at x = 0.1799 m vs. log10Λ for the 

reaction N2 + N ⇄ 3N. 

 

Figure 6.8: Scatterplot showing the vector QoI ρNO for all of the shocks simulated in the 

sensitivity analysis, along with the variance of ρNO as a function of x. 

log
10

(
NO + N <--> 2N + O

)


N

O
(k

g
/m

3
),

a
t

x
=

-0
.0

0
2

8
m

-8.5 -8 -7.5 -7
0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

r
2

= 0.2438

log
10

(
N2 + N <--> 3N

)


N

O
(k

g
/m

3
),

a
t

x
=

-0
.1

7
9

9
m

-8 -7.5 -7 -6.5
0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

r
2

= 0.3456



 143 

 

Figure 6.9: Variance-weighted sensitivities as a function of streamwise location for the 

top five most sensitive parameters.  Both r
2
 and the mutual information are 

shown on the plot for each reaction. 
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Figure 6.10: Zoomed-in view of the plot in Fig. 6.9, showing the non-equilibrium region 

where the variance of ρNO and the variance-weighted sensitivities are 

highest. 

CONVERGENCE 

In order to be confident of our results, we must once again show that they are 

converged with respect to the DSMC numerical parameters (time step, cell size, and the 

ratio of real to simulated particles), and we must also show that we have sufficient points 

in our Monte Carlo sampling of the parameter space. 
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Figure 6.11: Overall, variance-weighted sensitivities for each parameter with each 

measure of sensitivity. 

We first consider the resolution of the DSMC simulations.  As before, we are not 
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not have to be moved or indexed to cells in the 0D scenario), and therefore we must 

consider the time step when examining convergence.  Since we are now dealing with 

three numerical parameters and our runs take substantially longer, it is not feasible to 

include the numerical parameters in the sensitivity analysis as we did for the 0D 

relaxation, and so we will show convergence in another way.  

In order to demonstrate that our sensitivity analysis results are independent of 

DSMC numerical parameters, we have performed a second sensitivity analysis, just like 

the one described previously, with half of the resolution used for the runs shown earlier in 

this chapter.  The physical dimensions and initial conditions for the shock were the same 

for this second analysis, and the parameter space and Monte Carlo sampling process were 

the same.  However, the number of cells was halved (and thus the cell-size was doubled), 

the time step was doubled (and thus the number of steps was halved), and the ratio of real 

to simulated particles was doubled (so the total number of simulated particles was 

halved).  Since the cell-size was doubled at the same time that the number of particles 

was halved, the average number of particles per cell remained the same (~100 particles 

per cell downstream of the shock).  The noise in the simulation results was nonetheless 

increased, since with the larger time step the number of samples of the moving shock 

region over the course of the simulation was halved.  Thus, in every aspect (temporal 

resolution, spatial resolution, and stochastic noise) these simulations were resolved 

significantly less well than the simulations used for the main analysis.   

Results for the variance-weighted mutual information as a function of streamwise 

location for the two analyses are shown in Figure 6.12.  This figure shows only the part 

of the streamwise domain nearest the shock front, because the curves are nearly identical 

in the rest of the domain.  The curves are very similar in shape in the region shown in 

Fig. 6.12, despite the fact that, as shown previously in Fig. 6.8, this is the region where 
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the non-equilibrium is most pronounced.  It is this region which dominates the integrated 

sensitivities, which are shown for both the normal and low resolution analyses in Figure 

6.14.  While the integrated sensitivities are not identical for the two resolutions, they are 

similar.  The top nine most sensitive parameters are the same for either resolution, and in 

fact these nine are in the same order from highest to lowest integrated sensitivity. 

The primary goal of our sensitivity analysis is to identify the most-sensitive 

parameters, and to rank them from most-to-least sensitive.  We have shown that the most-

sensitive parameters, and their order, are unchanged when the resolution of the DSMC 

simulations used in the analysis is halved, and based on this we conclude that we are 

sufficiently converged with respect to DSMC numerical parameters. 

 

 

Figure 6.12: Variance-weighted sensitivities (based on the mutual information) as a 

function of streamwise location of the six most sensitive parameters.  

Sensitivities are shown for the normal resolution and also for the lower 

resolution analysis.  While the curves do not agree exactly, the shapes are 

very similar. 
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We also need to demonstrate that we have sufficient Monte Carlo sample points 

in parameter space to consider our analysis resolved.  To check this we follow the same 

procedure as we did for the 0D relaxation; we compare the results of our main analysis 

(which for this scenario used 5600 sample points) with results from just half of our total 

points.  The results from the 2800 point analysis for variance-weighted mutual 

information vs. streamwise location are compared with the full analysis results in Figure 

6.13.  As with Fig. 6.12, this figure shows only the part of the streamwise domain nearest 

the shock front, and the shapes of the curves are nearly identical.  Integrated sensitivities 

from the 2800 point analysis are shown in Fig. 6.14.  The results from the 2800 point 

analysis closely mirror those of the full analysis, and the top eleven parameters (and their 

ordering) are the same for both analyses.  Based on these results, we conclude that we 

have sufficient Monte Carlo sample points to consider our results converged. 

 

 

Figure 6.13: Variance-weighted sensitivities (based on the mutual information) as a 

function of streamwise location of the six most sensitive parameters.  

Sensitivities are shown for the main analysis (with all 5600 Monte Carlo 

sample points) and also for the analysis with only half of the sample points. 

X (m)v
a

r(


N
O
)

x
M

I
(N

o
rm

a
li
z
e

d
)

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1
N

2
+ N <--> 3N (All Points)

O
2

+ O <--> 3O (All Points)
NO + N <--> 2N + O (All Points)
NO + O <--> N + 2O (All Points)
N

2
+ O <--> NO + N (All Points)

NO + O <--> O
2

+ N (All Points)
N

2
+ N <--> 3N (Half Points)

O
2

+ O <--> 3O (Half Points)
NO + N <--> 2N + O (Half Points)
NO + O <--> N + 2O (Half Points)
N

2
+ O <--> NO + N (Half Points)

NO + O <--> O
2

+ N (Half Points)



 149 

 

Figure 6.14: Overall sensitivities (based on the mutual information) for the main analysis 

presented earlier in the chapter (regular DSMC resolution with all 5600 

Monte Carlo sample points), the analysis with lowered DSMC resolution, 

and the analysis with half as many Monte Carlo sample points. 
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Chapter 7:  Synthetic Data Calibrations 

OVERVIEW 

All of the results presented so far have concentrated on sensitivity analysis, and it 

is in that area that the majority of our code and algorithm development effort was focused 

(along with the writing and optimization of the DSMC code for our current needs).  

Sensitivity analysis can be very useful in its own right, and there are many applications 

for our methodology even in situations where there is no intention to ever calibrate 

parameters by solving the statistical inverse problem.  However, the long term goal of 

this project is the calibration of DSMC parameters relevant to the modeling of a 

hypersonic shock, and our sensitivity analyses were performed primarily with this long-

term goal in mind.  With sensitivity analyses complete for both the 0D relaxation and the 

1D shock scenarios, we would now like to demonstrate that we can calibrate the 

parameters we identified as suitable during the sensitivity analyses.  Due to the fact that 

we are not yet able to fully simulate the shock tube experiments for which there are 

available experimental data in a form which is useful to us, we will instead use synthetic 

data to demonstrate the calibration process for our DSMC parameters. 

We first identify the parameters to be calibrated, based on our sensitivity analysis 

results.  Next we describe the scenarios and the calibration data which will be used during 

the solution of the inverse problem, and then we specify a likelihood equation.  Finally 

we perform the synthetic data calibration and present the results. 

 

PARAMETERS 

 Both the 0D relaxation and the 1D shock sensitivity analyses identified the same 

top six most sensitive parameters.  These parameters are the pre-exponential constants in 
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the Arrhenius-type rate equations for six of the reactions which are included in our five-

species air chemistry model.  We will attempt to calibrate these six parameters based on 

synthetic data.  We will use the same priors which were used in the sensitivity analysis, 

which allow the parameters to each vary over a two order of magnitude range.  Once 

again, the lower limit for each pre-exponential constant will be 0.1Λnom and the upper 

limit will be 10Λnom.  As before, due to this large range, we will actually perform the 

calibration for log10Λ for each of the six reactions, and log10Λ will have a uniform prior 

over the range from log10Λnom − 1 to log10Λnom + 1.  Table 7.1 lists the six reaction 

parameters to be calibrated, with the parameter numbers kept consistent with those given 

in Tables 5.1 and 6.1 to avoid confusion when parameter numbers are referred to in later 

text and figures.  The limits of the uniform prior and the nominal value for each 

parameter are also included in the table.  Note that as was the case during the sensitivity 

analysis, the nominal values do not play a direct role in the solution of the statistical 

inverse problem and are listed only for informative purposes.  They are used initially to 

specify the centers of the priors and they are also used to generate the synthetic data (as 

will be discussed momentarily), but once those parts of the process are complete they 

play no further role in the calibration process. 

Table 7.1: The six parameters chosen for calibration.  The parameter numbers are kept 

consistent with those in Tables 5.1 and 6.1. 

# Parameter 
Prior Distribution Limits 

Nominal Value 
Minimum Maximum 

2 log10Λ (N2 + N ⇄ 3N) -8.16 -6.16 -7.16 

9 log10Λ (O2 + O ⇄ 3O) -10.82 -8.82 -9.82 

12 log10Λ (NO + N ⇄ 2N + O) -8.88 -6.88 -7.88 

14 log10Λ (NO + O ⇄ N + 2O) -8.88 -6.88 -7.88 

16 log10Λ (N2 + O ⇄ NO + N) -16.95 -14.95 -15.95 

17 log10Λ (NO + O ⇄ O2 + N) -18.80 -16.80 -17.80 
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SCENARIO SELECTION 

Earlier in this work we split our efforts between two types of scenario: a 0D 

relaxation and a 1D shock.  We did this primarily because the 0D relaxation is 

substantially less expensive computationally.  We were able to explore several aspects of 

our sensitivity analysis methodology more thoroughly with the 0D relaxation than we 

were with the 1D shock.  We also wanted to test the hypothesis that with the right initial 

conditions, the 0D relaxation could be used as a substitute model for the 1D shock for 

some purposes.  The fact that we identified the same top six parameters for both types of 

scenario provided some justification for this argument.  We do not claim that the 0D 

relaxation is a substitute model for the 1D shock in the sense that the density (or 

temperature, pressure, etc.) vs. time profiles for a relaxation are equivalent to the density 

vs. x profiles for a shock, we have only claimed that the results of DSMC simulations of 

the two scenarios are sensitive to the reaction rate parameters in similar ways. 

The eventual goal of this project is to perform calibrations with experimental data 

which will most likely come from a shock tube, and therefore the 1D shock scenario is 

the more realistic of the two scenarios.  However, the greatly increased computational 

expense of the 1D shock becomes much more of an issue when performing calibrations 

than it was for the sensitivity analysis.  This is partly because the calibration process 

requires more total simulations than the sensitivity analysis did, but the primary issue is 

due to the nature of the MCMC algorithm.  During the sensitivity analysis every sample 

of the parameter space was completely independent of every other sample, and thus the 

work could be spread across an arbitrary number of processors in order to maximize 

parallel efficiency of the DSMC code (a total of seven sixteen-hour runs on 4096 

processors were required for the 1D shock sensitivity analysis).  When using MCMC to 

solve the inverse problem, however, simulations must be run in sequence.  A new 
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candidate position cannot be chosen until the simulation for the old candidate position is 

completed and a value for the likelihood is provided to the MCMC algorithm.  This is an 

inherent aspect of the MCMC process, and there is no way to avoid it.  This means that 

the simulation time required for a given chain will be the number of candidate positions 

tested in the chain multiplied by the average time required for each simulation.  

Unfortunately, while our method of simulating 1D shocks in DSMC is reasonably fast, it 

would still take a long time to run chains of sufficient length.  The code scales very well 

as the size of the problem increases, but a certain number of particles per cell are required 

to accurately model the physics and therefore even though we use adaptive load 

balancing to even out the work, for a given problem size the DSMC simulations still do 

not scale efficiently to arbitrary numbers of processors.  This means that if we are already 

utilizing large numbers of processors (as we did for the sensitivity analysis) we can run 

multiple chains simultaneously, but we cannot complete a given chain any faster by 

adding more processors.  Running multiple chains is useful and can help greatly in 

exploring the parameter space more fully, but each chain still needs to reach some 

reasonable length in order to properly sample the posterior distributions.   

The required computation time investment makes calibrations for the 1D shock 

scenario difficult if not impossible in the timeframe of the current work.  As an example 

some short test chains were run for a 1D shock calibration, using a relatively low 

resolution for the DSMC simulations.  Based on the computational time per chain 

position, if these chains were to be run for the same number of positions as the chains 

used later in this chapter for the 0D relaxation calibration, the total computational time 

per chain would be ~320 hours (~13 days) if the simulations were performed on 128 

processors.  Switching to 256 processors would cut that time by ~30% (obviously at the 

cost of lost efficiency), but further increasing the number of processors per simulation 
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beyond this rapidly becomes pointless.  Thus, even if we were to accept the loss of 

parallel efficiency and use 256 processors per simulation, the chain would still take ~224 

hours (~9 days) to complete.  While it is a fairly substantial amount of time for a 

calibration, if this were the total time required we would have performed 1D shock 

calibrations.  The problem is that computational time does not directly translate to actual 

time when resource availability is considered.  The DoE generously allows us the use of 

Hera (a reasonably large-scale computing cluster), but due to the particulars of the 

queuing system (jobs have a maximum allowed runtime of 16 hours, the queue system 

penalizes heavy use by lowering a user’s priority for a period of time, and off-site 

academic users have lower priority than on-site DoE users in the first place) 9 days of 

computational time on 256 processors would require a month or more of real time.  

Furthermore, when using relatively short chains it is important to use multiple chains in 

order to more fully explore the parameter space, and thus we would need to use far more 

than 256 processors over those 9 days of computation time.  While multiple chains can be 

run in parallel, using large numbers of processors makes the drop in priority (and thus the 

increase in time spent waiting in queue between each job) substantially worse, to the 

point that a 1D shock calibration on Hera would take several months, even with relatively 

low resolution DSMC simulations. 

Before moving on, however, note that calibrations for the 1D shock scenario are 

not prohibitive in an absolute sense; they are only prohibitive with the available 

computational resources and within a reasonable timeframe for completion of this 

dissertation research.  The limitations described above will become less important over 

the coming few years as the overall project continues. 

Aside from the computational limitations, we will only be using synthetic 

calibration data regardless of whether we choose the 0D relaxation or the 1D shock for 
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our scenario, and thus the consideration of which scenario is more experimentally 

realistic becomes somewhat less important for our purposes.  Based on all of the above 

considerations, and keeping in mind that both scenarios present a complex and 

challenging physical problem and we have already demonstrated that the 0D relaxation is 

sensitive to the same parameters as the 1D shock, we elect to use the 0D calibration 

scenario for our synthetic data calibrations in this work. 

 

SCENARIO DETAILS 

 The primary scenario we will use for our synthetic data calibrations is the same 

one we used in Chapter 5 for the 0D relaxation sensitivity analysis.  We initialize a 0D 

box with synthetic air (79% N2, 21% O2) with a bulk number density of 1.0×10
23

 #/m
3
. In 

order to simulate the thermal equilibrium in the early part of a hypersonic shock, the 

initial translational temperature is set to ~50,000 K while the rotational and vibrational 

temperatures start at 300 K. A relaxation based on this scenario which was performed 

with the nominal values of all parameters was discussed in some detail in Chapter 5 (see 

Figs. 5.1, 5.2 and 5.4, along with the accompanying discussion). 

 When we initially began performing calibrations for the six parameters identified 

in Table 7.1, we quickly found that we could not properly calibrate them based on the 

results of only one relaxation scenario.  We would get either extremely broad posterior 

PDFs (which for some parameters would cover the entire range of the prior) or we would 

get several distinct peaks in the PDF for a given parameter.  After further testing, we 

came to realize that this behavior was not due to the length of the chains or the particular 

values chosen for various numerical parameters associated with the DRAM algorithm.  It 

was actually due to the fact that, when calibrating six important parameters with such 
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broad priors, there were actually multiple solutions.  Multiple sets of values for the six 

parameters could produce simulation results which lay within any reasonable set of error 

bars we might place on our synthetic data. 

 Therefore, in order to properly calibrate our parameters, we chose to make use of 

synthetic data from two scenarios.  The second scenario is another 0D relaxation, with the 

same initial number densities and the same initial rotational and vibrational temperatures, 

but this time with an initial translational temperature of 30,000 K.  This second relaxation 

scenario would correspond to a shock with a significantly lower speed than the ~8 km/s 

shock for which the first 0D relaxation is intended to be a substitute. 

To illustrate this second scenario, a sample relaxation was performed with the 

nominal values of all parameters, just as was done for the first scenario.  Density profiles 

from this relaxation are shown in Figure 7.1.  Due to the lower initial translational 

temperature most of the dissociation rates are significantly lower, and therefore the 

timescale for the relaxation to approach equilibrium is longer.  We do not need to follow 

the relaxation all the way to full equilibrium, however.  We simply carry out the 

simulation until a point where the density profiles are changing significantly more 

slowly, as seen in Fig. 7.1.  We also chose the end time for our simulation based on the 

desire to have a simulation for this scenario take approximately the same amount of 

computational time as a simulation for the first relaxation scenario. 

Examining the curves in Fig. 7.1, O2 density drops quickly near the beginning of 

the relaxation, although not as quickly as for the first relaxation scenario.  Unlike in the 

first relaxation, O2 density does not drop to zero within the timeframe of the simulation; 

some small amount remains even at the end.  The density of N2 also does not drop as 

much as it did for the first relaxation scenario.  The N density and the O density are lower 

relative to the first relaxation scenario since N2 and O2 are less dissociated and also due to 
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the fact that less of the NO (which is initially formed by the exchange reactions) is 

dissociated. 

 

  

Figure 7.1: Evolution of the density profiles for all five species during a relaxation from 

an initial state with 79% N2 and 21% O2.  Initial translational temperature is 

30,000 K while initial rotational and vibrational temperatures are 300 K.  

This relaxation is the second scenario for our synthetic data calibrations. 

CALIBRATION DATA 

With our scenarios chosen, we must now select a set of calibration data for each 

scenario.  In principle, there is no reason that any of the calibration data has to be directly 

related to the QoI which was used for the sensitivity analysis, but for this work we choose 

to make use of ρNO again in our calibration dataset.  We use ρNO mainly because it is 

sensitive to the parameters we wish to calibrate (we know this since we used it as the QoI 
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for the sensitivity analysis and we chose the parameters to calibrate based on that 

sensitivity analysis).  It is also at least plausibly measurable in a shock tube experiment 

(although we do not actually have any usable experimental data for it) and it is less 

affected by DSMC stochastic noise than the temperature profiles. 

In addition to making it clear that we needed two scenarios in order to properly 

calibrate our parameters, our initial test calibrations also revealed that we would need to 

use calibration data based on more than just the NO density profile.  Even when using 

data from two scenarios, calibrations based on only data for ρNO did not lead to well-

characterized post-calibration PDFs for the parameters.  We therefore chose to use the 

densities of N and O in addition to ρNO in our synthetic dataset.  Note that together these 

three profiles incorporate all possible density information for our five-species air.  Since 

the bulk density is constant and elemental identities are preserved, if we have the density 

of N, O, and NO at any point in the relaxation then we also know the densities of N2 and 

O2 at that point by conservation of the mass of each element. 

Our synthetic data are taken from a run of both scenarios with the nominal values 

of all parameters.  As was discussed in Chapter 4, we must also specify an uncertainty for 

use in our likelihood equation (the likelihood equation for these calibrations will be 

discussed in the next section).  There is a difference this time, though.  In Chapter 4 we 

were using synthetic data from a hypothetical model which was represented by a single, 

deterministic equation, and so we were absolutely certain that with the correct parameter 

values the model results could match the data to arbitrary precision.  Therefore, in that 

case the uncertainty used in the likelihood equation was only a data uncertainty, there 

was no uncertainty for the model.  Since the data were synthetic data from a deterministic 

model the data uncertainty would in reality be zero, but since some non-zero uncertainty 
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is required by the MCMC algorithm it was necessary to make up a hypothetical 

uncertainty in order to do the calibration example in Chapter 4. 

The fact that we are now using a stochastic model changes things.  We can no 

longer assume that if we ran our “experiment” many times we would always get the exact 

same results.  If we ran the code to generate the synthetic data multiple times with 

different random number seeds we would get slightly different output each time, and thus 

we have actual data uncertainty.  Furthermore, we can no longer be sure that our model 

will exactly match the data, even if we ran it with the exact same parameters which were 

used to generate the data in the first place.  This means that in addition to data 

uncertainty, we have a form of model uncertainty as well. 

The uncertainty we will use for these calibrations is therefore not completely 

arbitrary.  We must use an uncertainty which is large enough to address the fact that our 

simulations (both those which generated the synthetic data and those run during the 

calibration process) are stochastic and have finite noise.  Based on empirical testing and 

on experience with the noise levels in our DSMC output when run with the resolutions 

we will be using for the simulations during the calibration, we choose an uncertainty for 

our data set.  For simplicity, we choose an uncertainty which is high enough that we can 

use the same uncertainty for all three density profiles for both scenarios (i.e. we choose 

an uncertainty which is high enough to address the noise level in the noisiest of the 

density profiles in either scenario).  In Figure 7.2 we show the density profiles which we 

will use as our synthetic data for the first relaxation scenario (the one from Chapter 5) 

and in Figure 7.3 we show the data for the second relaxation scenario (which we 

discussed earlier in this chapter).  In both figures we also show 2σ error bars on each data 

set based on the uncertainty we have empirically chosen. 
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Figure 7.2: Synthetic data for the first relaxation scenario, along with 2σ error bars on 

the data (based on an uncertainty of σ
2
 = 2.0×10

-11
).  A set of 11 evenly 

spaced points from each curve are used as the synthetic data points for the 

first scenario. 
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Figure 7.3: Synthetic data for the second relaxation scenario, along with 2σ error bars 

on the data (based on an uncertainty of σ
2
 = 2.0×10

-11
).  A set of 11 evenly 

spaced points from each curve are used as the synthetic data points for the 

second scenario. 

LIKELIHOOD EQUATION 

The role of the likelihood equation in the calibration process was described in 

detail in Chapter 4.  In short, a likelihood equation tells us the degree to which we believe  

that a given set of parameter values is reasonable in light of the comparison of the output 

of the model (when run with that set of parameter values) to the calibration data.  For the 
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calibrations in this work we will use a Gaussian likelihood equation and we will assume 

that the data points are all independent of one another.  While not always realistic, this 

assumption is not uncommon.  For example, both Miki et al. (2012b) and Panesi et al. 

(2012) chose to treat their data points as independent when calibrating parameters related 

to shock tube simulations.  We also use a constant uncertainty for all of the data points, as 

discussed in the previous section.  With those assumptions in place, the likelihood for a 

given set of parameters (based on a given dataset) is obtained from Eq. 4.2, which is 

repeated here for convenience. 

               |   
 

      
  
 

   [ 
 

   
∑        

   
   ] (4.2) 

where Nd is the number of calibration data points,       is the vector of data points 

from the calibration dataset,       is the model output vector, and σ
2
 is the variance 

which is expected at each data point due to the uncertainty described earlier.  When we 

employ Eq. 4.2 in the code we actually calculate and return the natural log of the 

likelihood, and we make use of basic properties of the natural logarithm in order to 

calculate the ratio of the candidate and current position likelihoods without encountering 

numerical problems related to storing very large or small numbers. 

When dealing with multiple types of data from multiple scenarios, we calculate a 

separate likelihood based on each dataset, and the overall likelihood is simply  

                    ∏                     
         
    (7.1) 

where Ndatasets is the total number of data sets being used in the calibration and the 

likelihood based on the i
th

 dataset is calculated from Eq. 4.2.  By using Eq. 7.1, we have 

implicitly given equal weight to all of our datasets. 
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CALIBRATION PROCESS 

We use the PECOS-developed software package QUESO (Prudencio and Schulz, 

2012) to solve the statistical inverse problem in order to calibrate our chosen parameters 

with respect to the synthetic datasets previously described.  The calibration methodology 

was discussed at length in Chapter 4, so in this section we will discuss only the parallel 

organization employed for our current synthetic data calibration, which was not discussed 

previously since the calibrations in Chapter 4 were run in serial due to their negligible 

computational cost. 

There are several levels of parallelism which are employed during the calibration 

process, as illustrated by the schematic in Figure 7.4.  QUESO is capable of running 

multiple chains in parallel, and we make use of this feature.  A subset of the overall group 

of processors is given to each chain and those processors work on that chain exclusively 

until it reaches the specified length, at which point they remain idle until all other chains 

have also been completed.  When the overall C++ driver code calls the MCMC/DSMC 

interface subroutine (via the C++/Fortan 95 interface subroutine, see the flowchart in Fig. 

4.2 which illustrates the interactions of the various codes during the calibration process), 

it passes along the communicator for the group of processors assigned to each chain.  The 

MCMC/DSMC interface subroutine then further subdivides each chain group, and 

assigns these new subgroups to each simulate one of the two scenarios used for the 

calibration.  The communicator for each scenario group of processors is then sent to the 

DSMC code.  The DSMC code then assigns a unique random number seed to all of the 

processors in the scenario group, and each of them simulates a 0D relaxation with the 

appropriate conditions for the scenario and using the parameter values corresponding to 

the candidate chain position.  The results from these individual relaxations are ensemble 

averaged to provide relatively low-noise density profiles, and these profiles are sent back 
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to the MCMC/DSMC interface code, which calculates the likelihood for the candidate 

position parameter values based on the dataset for each scenario.  Finally, the likelihoods 

based on the two scenarios are multiplied together to obtain an overall likelihood for the 

candidate chain position.   

 

 

Figure 7.4: Levels of parallelism used during the calibration process.  The blue ovals 

show the parallel organization for the parts of the process that take place 

within the QUESO driver code, the orange ovals show the organization for 

the parts within the MCMC/DSMC interface code, and the green circles 

show the organization within the DSMC code.  See Fig. 4.2 for more 

information on the codes which participate in the calibration process.  The 

single processor runs are ensemble averaged to provide lower noise results.  

Any number of chains and single processor runs may be used; the numbers 

here are just for readability of the schematic.  The code is also capable of 

handling more than two scenarios, but we use only two for the calibration 

presented in this work. 
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CALIBRATION RESULTS 

With all of the necessary pieces now in place, we are finally ready to perform our 

synthetic data calibration.  Thirty-two chains were used in the calibration, each with a 

random starting position in parameter space.  Each chain contained a total of 8,000 

positions, and both delayed rejection and adaptation of the proposal covariance matrix 

were used to improve the convergence of the chains (see Chapter 4 for a discussion of 

these two improvements to the MCMC algorithm).   Running the simulations for this 

calibration required four 16-hour, 4096 processor runs, for a total of more than 250,000 

CPU hours. 

Once the chains have reached their specified number of positions, we are left with 

a set of 32×8,000 = 256,000 positions in parameter space.  The chains take some time to 

explore the parameter space before they begin to approach the posterior distribution, and 

therefore we use a burn-in of 4,000 positions per chain when we estimate the post-

calibration PDFs for the parameters.  This leaves us with 128,000 positions.  Making use 

of KDE (as discussed in Chapter 4), we estimate the posterior distribution for each of the 

six parameters based on these 128,000 positions. 

The posterior PDFs for all six parameters are shown in Figures 7.5 – 7.7.  It is 

immediately apparent from these figures that the posterior PDF for each of the six 

parameters has a dominant peak.  Several of the posterior PDFs also have one or more 

smaller, secondary peaks.  We will investigate these secondary peaks later in this section, 

but first we would like to examine all of the dominant peaks in more detail. 
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Figure 7.5: Post-calibration PDFs for parameters #2 and #9 (based on numbering from 

Table 7.1). 

 

Figure 7.6: Post-calibration PDFs for parameters #12 and #14 (based on numbering 

from Table 7.1). 
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Figure 7.7: Post-calibration PDFs for parameters #16 and #17 (based on numbering 

from Table 7.1). 
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differs from the nominal value of this parameter by ~3%.  Keeping in mind that the 

chains only have 8,000 positions (4,000 of which were discarded as the burn-in), that 

some amount of stochastic noise is present in both the synthetic data and the simulations 

for the candidate chain positions, and that the parameters were allowed to vary over a 

two-order of magnitude range, we consider a maximum error of 3% in the locations of 

the peaks of the posterior PDFs to be an indication that the synthetic data calibration was 

successful.  However, in the future it would be worthwhile to run more and longer chains 

with better DSMC resolution in order to confirm that this 3% error is due only to 

stochastic noise and not due to a bias error of some kind.  Moreover, it might also be 

worth exploring how many chain positions are required to achieve a desired level of 

accuracy in the posterior PDFs.  This desired level of accuracy could be based on either 

the full PDF or just the location of the peak.  This is a difficult problem because there are 

so many numerical parameters to consider.  It would be necessary to consider how 

convergence to the posterior distributions is affected by the number of delayed rejection 

steps, the scaling factors used for the later stage proposals, the number of positions 

between each adaptation of the proposal covariance matrix, the number of positions 

discarded for the burn-in, the number of chains employed, and the appropriate 

computational time trade-off between increasing the DSMC resolution and obtaining 

more chain positions. 
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Figure 7.8: Post-calibration PDFs for all six of the parameters, with the horizontal axis 

normalized so the nominal value for all parameters is zero. 
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Figure 7.9: Same PDFs as in Fig. 7.8, zoomed in to show the PDF peaks more closely. 
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and/or only one density profile for our dataset) or whether these secondary PDFs are 

numerical artifacts which result from our relatively short chains.  In order to make this 

determination, we consider the fact that we actually have values of the likelihood for well 

over 450,000 distinct positions in parameter space.  These include the likelihoods for the 

256,000 first stage candidates (we do not need to discard the burn-in if we are only 

concerned with the likelihoods for specific positions in parameter space), and also more 

than 200,000 second stage candidates which were tried by the delayed rejection algorithm 

after the first stage candidate for a given chain position was rejected. 

 In order to make use of these positions, we must remember that having the 

likelihood at a given position in parameter space gives us the value of the posterior PDF 

at that location (aside from a normalization constant), because according to Bayes’ 

theorem the posterior distribution is equal to the prior multiplied by the likelihood and 

divided by a constant.  The equation for Bayes’ theorem is 

    |   
   |      

∫    |            
 

 (7.2) 

where P(θ|D) is the posterior distribution for the parameter after calibration based on the 

dataset D, P(D|θ) is the likelihood, P(θ) is the prior (which is always uniform in our work, 

and therefore can be neglected), and the integral in the denominator is carried out over 

the entire range of the parameter θ.  The integral in the denominator is not a function of θ, 

and therefore the denominator is a constant for a calibration based on any given dataset. 

 The purpose of our calibration is not to provide the posterior distribution at any 

given location in parameter space; based on the equation above we can determine the 

posterior PDF (aside from the normalization constant) for any point in parameter space 

from the results of a single simulation with our model.  Instead, the purpose of the 

calibration is to sample the posterior distribution in an intelligent way, in order to explore 

the regions of parameter space where the likelihood is relatively high.  Sometimes, 
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however, a chain will find a location in parameter space where the likelihood (and thus 

the posterior distribution, since we use a uniform prior) is higher than in all of the 

surrounding regions, while still being much lower than at some other far off location.  

The likelihood around this local maxima may be vastly lower than the likelihood at a true 

peak of the posterior PDF which is located elsewhere in parameter space, but in spite of 

this the chain may stay in the region around this local maxima for an extremely long 

period of time, such that chains of a practical length may never find the true peak.  Haario 

et al. (2006) proved the ergodicity of the DRAM algorithm, and therefore all of the 

chains should eventually converge to the posterior distribution, but there is no way to 

know how many chain positions would be required to achieve any given convergence 

metric, and in practice it could be a vast number.  This situation may be exacerbated by 

the fact that we adapt the proposal covariance matrix relatively early (after only 1,000 

chain positions).  We adapt after only 1,000 positions because it allows the chains which 

have actually found the true peak to start exploring that region in more detail (rather than 

wasting computational time by continuing to select far flung first stage candidate 

positions which are almost always rejected).  Unfortunately, the same chain behavior that 

we want to occur in the region of the true peak also occurs in the region of false peaks 

(local maxima), because those chains also have their proposal distributions adapted 

(resulting in a narrower proposal distribution if a substantial number of positions have 

already been accepted in a small region around the false peak), which then makes it even 

less likely for that chain to leave the false peak during a calibration with a practical 

number of chain positions. 

Fortunately, however, we can address this problem by simply examining the 

likelihoods for the positions of each chain.  In addition to showing the posterior PDFs, 

Figs. 7.10 – 7.12 also display the likelihoods for the candidate positions tested during the 
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calibration.  The likelihood values shown in the plot neglect the constant in front of the 

exponent in Eq. 4.2 because this constant does not change depending on the location in 

parameter space, and we are only interested in the value of the likelihood at a given 

position relative to other positions.  If the secondary peaks in the posterior PDFs for these 

parameters occurred because multiple peaks were actually present in the true posterior 

PDF (i.e. sets of parameter values from multiple regions in parameter space would lead to 

simulation results which closely match the synthetic datasets), we would expect to find 

values of the likelihood in the regions near the secondary peaks which are comparable to 

the values of the likelihood near the dominant peak.  These figures show that for all three 

of these parameters the values of the likelihood in the region near the dominant peak are 

orders of magnitude greater than the likelihood for any position in the regions around the 

secondary peaks.  This confirms for us that these secondary peaks are false peaks and can 

safely be ignored as numerical artifacts. 

Having confirmed that the dominant peaks in the posterior PDFs for all of the 

parameters are within 3% of the nominal values of those parameters (which were used to 

generate the synthetic data), and having demonstrated that the secondary peaks are false 

peaks which result from our use of a relatively small number of chain positions, we are 

now willing to consider our synthetic data calibration successful. 
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Figure 7.10: Post-calibration PDF for parameter #9 from Table 7.1.  Also shown are the 

values of the likelihood for the candidate positions tested during the 

calibration (both those accepted as chain positions and those which were 

not). 
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Figure 7.11: Post-calibration PDF for parameter #12 from Table 7.1.  Also shown are the 

values of the likelihood for the candidate positions tested during the 

calibration (both those accepted as chain positions and those which were 

not). 
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Figure 7.12: Post-calibration PDF for parameter #14 from Table 7.1.  Also shown are the 

values of the likelihood for the candidate positions tested during the 

calibration (both those accepted as chain positions and those which were 

not). 
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Chapter 8:  Conclusions and Future Work 

CONCLUSIONS 

At this point, we recall the objectives we set out for this work in the first chapter 

and assess whether these objectives have been achieved. 

Our first objective was to write and test a DSMC code which would be suitable 

for use in this work.  We now have a DSMC code which was written, tested, and 

optimized for the simulation of 1D hypersonic shocks, the primary scenario of interest in 

this project.  We have used this code to simulate thousands of shocks.  Our shock 

simulation technique is well-suited for situations where the post-shock conditions are not 

known a priori, as is the case in almost any scenario where real gas effects are important.  

We have also modified the commonly used TCE model to allow for the accurate 

simulation of reaction rates which are large relative to the elastic collision rate. 

Our second objective was to perform sensitivity analyses for both a 0D relaxation 

scenario and a 1D shock scenario, and to test the hypothesis that the 0D relaxation can in 

some ways serve as a substitute model for the 1D shock for the purpose of sensitivity 

analysis.  A complete sensitivity analysis methodology was generated.  We integrated our 

DSMC code with a sensitivity analysis driver code in order to sample a high-dimensional 

parameter space, including parameters for elastic collision cross-sections, rotational and 

vibrational energy transfer, and reaction rates.  We successfully completed sensitivity 

analyses for both the 0D relaxation and the 1D shock.  In each of these analyses we 

presented results for sensitivities based on both r
2
 and the mutual information.  This 

appears to be the first global, Monte Carlo based sensitivity analysis for DSMC 

simulations.  Furthermore, it appears be the first sensitivity analysis in the hypersonics 

field to use the mutual information as a measure of sensitivity.  Perhaps most 

significantly, we based our sensitivity analyses on vector quantities of interest.  We 
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described a technique for obtaining overall sensitivities which incorporate the 

sensitivities for all of the components of a vector QoI while emphasizing the regions of 

the flow where non-equilibrium is most significant.  Making use of these overall 

sensitivities, we determined that the six most sensitive parameters were the same for both 

the 0D relaxation and the 1D shock scenarios, regardless of whether r
2
 or the mutual 

information was used as the measure of sensitivity.  We also investigated the differences 

which do exist between the sensitivities calculated with the two different measures, and 

found that they were due to nonlinearities in the relationships between certain parameters 

and certain components of the vector QoI.  These nonlinear relationships were captured 

by the mutual information but not by r
2
.  For this reason, if in a future sensitivity analysis 

there were substantial differences between sensitivities based on the two measures, we 

would believe the results based on mutual information over those based on r
2
. This 

provided some justification for our hypothesis that the 0D relaxation can in some cases be 

used as a substitute model for the 1D shock for the purpose of sensitivity analysis. 

Our final objective was to perform a synthetic data calibration for the parameters 

selected in our sensitivity analysis.  In order to perform this calibration, we made use of 

the QUESO software package along with a set of interface codes which link the DSMC 

code to QUESO.  These interface codes can calculate the likelihood at any given 

candidate position based on multiple types of data which come from simulations of many 

different scenarios.  This feature should prove useful in the future when calibrating based 

on experimental data.  A calibration was performed based on a set of synthetic data which 

consisted of three density profiles from each of two different 0D relaxation scenarios.  

This calibration was successful in generating posterior PDFs with peaks near the nominal 

values of the parameters which were used to generate the synthetic data.  We also 
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demonstrated that the small secondary peaks found in the posterior PDFs for several of 

the parameters are numerical artifacts which may be ignored. 

 

FUTURE WORK 

There are several possibilities for future work as the overall project moves 

forward.  These possibilities mostly fall into two broad categories: improvements to the 

DSMC code and the use of more advanced statistical analysis techniques. 

The current DSMC code is optimized for the simulation of 1D shocks, and it was 

written with the intent of eventually simulating experiments performed at a shock tube 

facility such as NASA EAST (Grinstead et al., 2008).  To properly simulate the EAST 

shock tube the DSMC code would need to be upgraded to include modeling of ionization 

and electronic excitation.  Ionization has been modeled in DSMC by Bird (1989), Bartel 

and Justiz (1993), Boyd (2007), and Ozawa et al. (2008), among others.  Electronic 

excitation has also been incorporated into DSMC codes in various past works, including 

Carlson and Hassan (1992), Gallis and Harvey (1994), and Li et al. (2011).   

In order to compare DSMC simulation results with data from NASA EAST it 

would be necessary for the simulation to provide results for the radiation (either 

spectrally integrated, or if possible, spectrally resolved) from the shock-heated gas at a 

series of locations downstream of the shock front.  The radiation could be calculated 

directly within the DSMC code as was done by Gallis and Harvey (1995), Berghausen et 

al. (1996), and Moore et al. (2011), or it could be obtained from the DSMC results via 

post-processing with a line-by-line radiation solver such as NEQAIR (Whiting et al., 

1996).  Finally, although it would not be required in order to simulate shocks from NASA 

EAST, the DSMC code could be upgraded to include some or all of the improvements 
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(such as nearest neighbor collisions) incorporated in the sophisticated DSMC algorithm 

of Bird et al. (2009). 

Future work could also focus on the use of more advanced statistical techniques.  

Kernel density estimation was used in this work to obtain PDFs from scatterplot data 

during the process of calculating the mutual information, but we could also have used k-

nearest neighbor (Kraskov et al., 2004) or B-splines (Daub et al., 2004).  Non-uniform 

(most likely Gaussian) priors could be employed during both the sensitivity analysis and 

the calibrations in order to better handle parameters for which we have a nominal value in 

which we are reasonably confident.  We could also make use of even more state of the art 

MCMC algorithms, such as that of Prudencio and Cheung (2012).  That algorithm 

incorporates multi-level modeling, which means that multiple calibrations are run 

sequentially and each new calibration makes use of refined prior distributions for the 

parameters which are based on the posterior distributions from the previously completed 

calibrations.  Another area for additional work is the likelihood equation employed 

during the calibration process.  In this work we have assumed in our likelihood equation 

that all data points are independent of one another, but this is not required.  Future work 

could address dependencies between the data points by making use of a non-diagonal 

covariance matrix in the Gaussian likelihood equation.  Non-diagonal covariance 

matrices which were designed to account for dependencies between the data points have 

been utilized, for example, by Miki et al. (2012a).  The current work also uses a 

likelihood equation which assumes that the discrepancy between simulation results and 

calibration data is best explained by an additive error structure.  Future work could 

examine the results of assuming that the error structure is multiplicative instead. 

Finally, due to the computational expense of DSMC simulations it might be 

worthwhile to consider the use of Gaussian process emulation.    A Gaussian process 
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emulator is a statistical technique which treats the output of a computational model as a 

Gaussian process over a space which is defined by the inputs to the computational model.  

A set of simulations is run with the real computational model in order to “train” the 

emulator, and afterwards the emulator may be used in place of the computational model 

for certain applications where computational constraints require that some amount of 

accuracy be sacrificed in order to obtain estimated model output more quickly.  

Rasmussen and Williams (2006) provide a detailed description of the algorithms involved 

in Gaussian process emulation, and an example of the use of this technique for the 

emulation of a complex physical model can be found in Higdon et al. (2008). 
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