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Statistical Methods for the Analysis of DSMC Simulationf

Hypersonic Shocks

James Stephen Strand, Ph.D.

The University of Texas at Austin, 2012
Supervisor: David Goldstein

In this work, statistical techniques were employed to study the modeling of a
hypersonic shock with the Direct Simulation Mo@arlo (DSMC) method, and to gain
insight into how the model interacts with a set of physical parameters.

Direct Simulation Monte Carlo (DSMC) is a particle based method which is
useful for simulating gas dynamics in rarefied and/or highly-eguilibrium fowfields.

A DSMC code was written and optimized for use in this research. The code was
developed with shock tube simulations in mind, and it includes a number of
improvements which allow for the efficient simulation of 1D, hypersonic shocks. Most
importantly, a moving sampling region is used to obtain an accurate steady shock profile
from an unsteady, moving shock wave. The code is MPI parallel and an adaptive load
balancing scheme ensures that the workload is distributed properly between processors
over the course of a simulation.

Global, Monte Carlo based sensitivity analyses were performed in order to
determine whichof the parametergxamined in this workmost strongly affect the

simulation results for two scenarios: a 0D relaxation from an irhigth temperature
Vi



state and a hypersonic shock. The 0D relaxation scenario was included in order to
examine whether, with appropriate initial conditions, it can be viewed in some regards as
a substitute for the 1D shock in a statistical sensitivity arsmlydin both analyses
sensitivities were calculated based on both the square of the Pearson correlation
coefficient and the mutual information. The quantity of interest (Qobsenfor these
analyses was the NO density profile. This vector Qol was brokena set of scalar

Qols, each representing the density of NO at a specific point in time (for the relaxation)
or a specific streamwise location (for the shock), and sensitivities were calculated for
each scalar Qol based on both measures of sensitiviitye sensitivities were then
integrated over the set of scalar Qols to determine an overall sensitivity for each
parameter. A weighting function was used in the integration in order to emphasize
sensitivities in the region of greatest thermal and chdmmga-equilibrium. The six
parameters which most strongly affect the NO density profile were found to be the same
for both scenarios, which provides justification for the claim that a OD relaxation can in
some situations be used as a substitute modeh ftwypersonic shock. These six
parameters are the pegponential constants in the Arrhenius rate equations for the N
dissociation reaction N+ N$ 3N, the Q dissociation reaction £Or O 30, the NO
dissociation reactions N®Nf 2N+O and NO+O# N +20, and the exchange
reactions N+ Of NO+ N and NO+O#f O,+N.

After identification of the most sensitive parametersynthetic data calibration
wasperformed to demonstrate that the statistical inverse problem could be solved for the
OD relaxdion scenario The calibrationwas performed using the QUESO code,
developed at the PECOS center at UT Austin, which employs the Delayed Rejection
Adaptive Metropolis (DRAM) algorithmThe six parameters identified by the sensitivity

analysis were calilated successfully with respect to a group of synthetic datasets.
vii
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Chapter 1: Introduction

MOTIVATION

Direct Simulation Monte Carlo (DSMC) is a particle based method which is often
used for the simulation of rarefied and/or highly emuilibrium gas flows where it is
important to account for necontinuum aspects of the gas dynamics. DSMC has been
continuously developed and improved by many researchers over the course of several
decades, buittle or no priorwork has been done which integrates DSMC with statistical
analysismethoddor the purposes of sensitivity analysis or parameter calibration

The DSMC method includes many parameters related to gas dynamics at the
molecular level. Examples include parameters related to elastic collisiorseigms,
rotational and vibrational excitation and relaxation, reaction €essons, etc. The
precse values of some of these parameters are not known and parameter values often
cannot be directly measured. Instead, they must be inferred from experimental results,
and by necessity parameters must often be used in regimes far from where their values
were calibrated More precisly calibratedvalues for some of these important parameters
could lead to better simulation of the physics, and thus to better predictive capability for
DSMC. Furthermore, having posalibration parameter PDFs which incorporate the
uncertainty of the experimental data used in the calibrations would assist greatly in
guantifying the uncertainty which is present in predictions made with DSMC. Finally,
identifying the set of parameters which most strongly influence the simulation results for
a given scenario will allow experimental and other computational efforts to focus on
lowering the uncertainty present in those parameters which most strongly affect a

partiaular quantity of interest (Qol).



OBJECTIVES

The current work focwes on sensitivity analysis and synthetic data calibration. It
is intended to lay the groundwork for futucalibration based on experimental data,
whichis the longterm goal otthe project

In approaching that goal, the first steo write and test a DSMC code which is
capable of seamless integration with the statistical methods we wish to employ, and
which is computationally efficient enough to allow us to perform very large numbers of
simulations within a reasonable timeframe. This code must also be able to correctly
model the relevant physics for a hypersonic shock, whitteiprimary scenario we have
chosen to examine in this work.

After the DSMC code is in place, the next stgpa sensitivity analysis to
determine which parameters madtongly affect theresults of DSMC simulations of
hypersonic shocks. Alobal ®nsitivity analysis is neededud to the relatively large
number of parameters, the large uncertainties associatédthgm, and the highly
couplednature of the physical problem. In this work, we will establish a set of codes
which allow us to employ global, Monte Carlo based methods to determine the
sensitivities for a variety of parameters. We will examine twocssdescenarios which
are suitable for simulation with DSMC. The first of these is a OD relaxation from an
initial high temperature state and the second is a 1D, hypersonic shock. The 0D
relaxation scenario is included in order to test the hypothesismtisame situations this
scenario can serve as a substitute (for the purposes of sensitivity analysis) for the much
more computationally expensive 1D shock scenario. We will identify a broad set of
parameters relevant to modeling each of these scenaitoOBMC, and we will then
determine which of these parameters most strongly affect the simulation results for a

chosen Qol.



Once the sensitivity analysis is completed, the final step is to perform synthetic
data calibrations in order to demonstrate tleg $tatistical inverse problem can be
solved, and thus that we can hope to eventually perform calibrations with realTtiata.
machinery put in place in this work will set the stage for subsequent calibrations with

experimental datas a part of the onguy project.

LITERATURE REVIEW

In this literature review we will cover the three main subject areas of this work.
The first section will deal with DSMC, the second with global sensitivity analysis

methods, and the third with the solution of the inversbélpm via the MCMC algorithm.

DSMC

We first address DSMC, the numerical technique used for all of the simulations in
this work. DSMCis a stochastic, particle based heet for simulating gas dynamics in
which smulated particles represent large numberseal particles. These simulated
particles move and interact witine another, and thateractions between particles (such
as elastic or inelastic collisions and chemical reactions) are handled statisizaNJC
is more computationally expensive thaost CFD codes, but is ioften the only realistic
option forthe simulation of rarefied flows which occur in a diverse set of fielusthis
work, our choice to usBSMC is driven by the fact that it is wedluited for theaccurate
simulation of highlynon-equilibrium regions of a flowfield (suchs strong shock waves),

and itcan model thermochemistry on a more detailed level than most CFD codes.



DSMC has been around for decades and has been used for the simulation of a
wide variety of physical probhes, from space shuttle -entry to MEMS devices to
planetary atmospheres. In this section we will focus on aspects of the method which
might pertain to the simulation of hypersonic shocks. The textbook written by Bird
(1994), who is considered the invenbf DSMC, provides a valuable source which will

be referred to throughout this section.

Collision Model

Bird (1994) provides an overview of the set of elastic collision models which are
often employed in DSMC si mul adphee rcdlision Pri or
model was used for most DSMC simulations. While results obtained with the hard
sphere modeare not grossly inaccurate, the model does not allow the collision cross
section to depend on the relative velocity between the colliding particles, which is a
major drawback. Bird (1981) proposed the variable dspitere (VHS) collision model.

The VHSmodel contains a second parameter which allows the collision-sectisn to

be dependent on the relative velocity, which then allows for a more accurate scaling of
viscosity with temperature. A further modification Bypura and Matsumot§1992),
knownas the variable soft sphere (VSS) model added a third parameter which affects the
scattering angle for the pestllision particle velocities, and adding this third parameter
allows DSMC to properly match both the viscog#ynperature relationship and althe
relationship between the diffusion coefficients and the temperature. More complex
collision models have also been proposed, such as the generalized hard sphere (GHS)
model of Hassan and Hash (1993) which allows the parameters of a L-donasi

potential to be used in the DSMC collision model.
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The models used for inelastic collisions have also changed over the years. The
very earliest DSMC simulations could only handle monatomic gases. Bird (1994)
described what he refers to as the LaBergnakkemodel (Borgnakke and Larsen,
1975), which can be incorporated into DSMC in order to allow the simulation of species
with internal energy modes. The model is phenomenological in nature, and allows
energy to be redistributed between the translational atednal modes during some
portion of the DSMC collisions. Models based on the work of Borgnakke and Larsen
were included in DSMC codes by boBergemann and Boy(1994) and Haagt al.
(1994). In recent years some DSMC codes have begun using-tostatie model for
vibrational collisions. In a stat®-state model, such as that of Boyd and Josyula (2011),
individual crosssections are used for each possible vibrational transition which might
occur during a collision between a given pair of specidses@ crossections may be a
function of the relative velocity between the particles and also of the current internal

energy state of both particles.

Chemistry Model

Bird (1994) described several possible chemistry models, including the commonly
used tothcollision energy (TCE) model. The TCE model calculates a reactmss
section based on the total energy (translational and internal) available in a collision. The
parameters for an Arrhenius reaction rate equation are included in the equation for the
reaction crossection, allowing DSMC reaction rates to be set to match Arrhenius rates.
Improvements have been incorporated into TCE in order to more properly address the

dependence of dissociation reaction rates on the vibrational level of the diegocia



species. The improved model was devised by Haas and Boyd (1993) and is known as
vibrationally-favored dissociation (VFD).

More advanced chemistry implementations are also possible, including ones
which are based on tabulated reaction ceesgions wer a range of collision parameters.

An example of this type of reaction model is included in the work of Meba (2011).

Shock Simulations

DSMC has been used a number of times in the past to simulate shock waves. In a
well-known work by Pharvan-Diep et al. (1989), the molecular velocity distribution
function from a DSMC simulation of a hypersonic shock was compared to an
experimentally measured molecular velocity distribution function. The bimodal velocity
distribution function observed in theatk had been predicted theoretically, but it had
never before been observed experimentally. The qualitative and quantitative agreement
between the experimental and DSMC simulated distribution functions which was
described in Erwiret al. (1991) is consided an important validation of the DSMC
method.

DSMC has been used to simulate hypersonic shocks in more recent work as well,
such as that diVatvisaveet al. (2011) which examined the effect of a growing boundary
layer on the propagation of a shock wawmepure nitrogen in a shodlibe. Another
recent example of the use of DSMC for hypersonic shock simulations can be found in the
work of Farbar and Boyd (2011), where a hybrid DSMC/PIC code was employed to
model a very high temperature shock layer plasueh as that which would be found in

the bow shock region of a-entry vehicle on a lunar or Mars return trajectory.



Sensitivity Analysis for DSMC Simulations

Sensitivity analyses have been performed with DSMC codes a number of times in
the past, but thehave been confined to a very small number of parameters (often just
one or two) and they have been local in natur&or example,Valentini and
Schwartzentrubef2009) examined the sensitivity of an argon shock profile to one of the
VHS collision parametrrs (the temperatunascosity exponenty). Only this one

parameter was varied, and it was varied only in a small region near its nominal value.

Calibration of DSMC Parameters

Recent work by StephaniGoldstein, and Varghese (2012) focused on the
calibration of DSMC collision parameters. The calibrations were done with the Nelder
Mead method. The aim in that work was to calibthte DSMC parametensot against
experiments, but rather agairestlifferent set of parameterslated to the calculation of
transport coefficientsnia CFD model This was doneso as to enabléhe transport

coefficientsto be matchedcross a hybrid boundary between DSMC and CFD codes.

Global Sensitivity Analysis

The purpse of the sensitivity analyses presented in this werto determine
which parameters most strongly affect the simulation results for a given scenario and
Qol. Later, when we perform synthetic data calibrationg will choose which
parameters to calibi@based on the results of our sensitivity analyses.

In this work we use a global sensitivity analysis methodology. In a global
sensitivity analysis all of the parameters are varigdulsaneously, and w global

sensitivity analysisechnique requirea Monte Carlo sampling of the parameter space.
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Before sampling the parameter spaagheparameter is assigned a distribution,
called the prior, which reflects the level of uncertainty for that parameter (based on
literature values and expert judgment).uridg the sensitivity analysis the parameters
take on values drawn fromdin priors, rather than in a small region abaéir nominal
values. For each sample from the parameter spacset of random number draws is
performed to determine the valuesatifof the parametersA simulation is then run with
this set of parameter values, and the results for the Qol are oudmae a reasonable
number of sample points have been completbd, results of this sampling can be
projected onto a twdimensionalspace to generate scatterplots of the values of a given
parameter vs. the values of a Qol, and these scatterplots can be used to &xamine
relationship between each parameter and the @or a much more detailed discussion
of the sampling of a paransgtspace during a global, Monte Carlo sensitivity analysis,
see Chapter 3 of this dissertation.

In this section we will cover the two measures afs#gvity which we will use
during our sensitivity analyses later in this work. Both of these measures are calculated
based on the information contained in the scatterplots described above. The first of these
measures is the square of the Pearson ctmelaoefficient (referred to ag)rand the

second is the mutual information.

Sensitivities Based orfr

The Pearson correlation coefficient is a very common statistical measure and can
be found in any basic statistics textbook, so we will not discuss\i@asure itself in this
section. The theory behind the use 0&s a measure of sensitivity is discussed in great

detail in Chapter 3 of this dissertation. We will focus here on the useasfa measure
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of sensitivity in past works involving global regtivity analyses related to hypersonic
flows.

Global sensitivity analyses have been performed for problems similar to what we
are examiningn this work but they have been done with hypersonic CFD codes rather
than with particle based methods. Bosejghtr and Gokgen (2004) performed a global
uncertainty and sensitivity analysis for the thermochemical modeling of a Titan
atmospheric entry. Their analysis was based on a Monte Carlo sampling of several
hundred parameters, such as reaction rate consfaartsmeters related to vibrational
relaxation and vibratioghemistry coupling, and transport properties. They used the
square of the Pearson correlation coefficient as their measure for sensitivity. Their work
examined scalar quantities of interestlsas the vehicle heating, and they were able to
identify the parameters whose uncertainties contributed most to the overall uncertainty in
the vehicle heating rate. Similar follewn work was done by Bose and Wright (2006)
for Mars entries. In that workhe Qol was the laminar, convective heating at the vehicle
surface, and a total of 130 parameters were examined, including collision integrals and
reaction rates. The parameter space was split into four domains, with each domain
corresponding to a partiar wallcatalysis regime. Four separate analyses were actually
conducted, one for each domain, and the parameters which contributed the most to the
overall uncertainty of the Qol were identified for each domain.

Miki et al. (2010) performed a global, Mte Carlo based sensitivity analysis for
a hypersonic CFD simulation of a 1D shock. The parameters included chemical reaction
rates, ionization rates, and parameters related to vibrational and electronic excitation.
That work alsaused the square of tliearson correlation coefficient as the measure for
sensitivity. That project is ongoingand subsequent work done by Méial. (2011) and

Panesket al.(2011) examined sensitivities for additional parameters
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The Mutual Information

The mutualinformation has not previously been used for a sensitivity analysis
related to hypersonic flows, at least in published work. In this section we will primarily
discuss the various works which have informed our current technique for calculating the
mutual nformation based on a dataset from a Monte Carlo sampling of a parameter
space. An irdepth discussion of the theory behind the use of the mutual information as a
measure of sensitivity can be found in Chapter 3 of this dissertation.

The concept of the ntwal information was first introduced by Shannon (1948),
and the textbook by Cover and Thomas (1991) provides a great deal of background
information on the subject. The work of Stewtral. (2002) gives a comprehensive
overview of the mutual informatioand some methods for estimating it based on a
sampling of the parameter space. The specific results presented in that work are from the
field of bioinformatics and involve the analysis ofexpressed genes, but the description
of the methods used to emtite the mutual information is straightforward and useful.
The mutual information is first defined and described briefly, and then two methods are
given for estimating the mutual information from a dataset. The first of these methods is
based on a histogm technique, and the paper demonstrates a key drawback of this
method, namely the potential for relatively large, spurious values of the mutual
information when the number of histogram bins is large relative to the number of data
points in the sample setThe second method for calculating the mutual information is
based on kernel density estimation (KDE) and it is shown that KDE is superior to the
histogram based method for calculating the mutual information in practical cases where

the number of samplpoints in parameter space is relatively small. Finally, the mutual
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information is compared witf s a measure of sensitivity for a set of gene expression
datasets. While describing KDE, Stewral. refer back to the work of Moogt al.
(1995), where&kDE is described in more mathematical detail.

Another technique for estimating the mutual information is known-asakest
neighbor, and it is described Byaskovet al.(2004), and yet another technique based on

B-splines is presented in the work ofubeet al. (2004).

MCMC

Markov Chain Monte Carlo (MCMC) is a method which solves the statistical
inverse problem in order to calibrate parameters with respect to a set of data. During the
calibration process, one or more chains are generated. Thase abrasist of a series of
positions in parameter space, with each position in parameter space corresponding to a set
of parameter values. A likelihood for any given chain position (i.e. for any given set of
parameter values) is calculated based on trsenatich between the calibration data and
the simulation results which are obtained when the model is run with that set of
parameters. Each chain begins at some initial position, and a likelihood is calculated for
that initial chain position. New chain ptigns are added by means of proposing
candidate positions. Candidate positions are drawn from a-dimiénsional Gaussian
proposal distribution centered at the current chain position. The covariance matrix of this
Gaussian controls the average distaficgparameter space) that the chain moves in one
step. After a candidate position is proposed, the likelihood is calculated for the
corresponding set of parameter values, and the candidate position is then accepted or
rejected based on a comparison bemvthat likelihood and the likelihood for the current

chain position. If the candidate position is accepted, it becomes the current chain
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position, and thus the chain grows longer. If the candidate position is rejected, the
current position remains unahged and a new candidate position is proposed. This
process is repeated a set number of times and/or until some specified convergence criteria
are met. As the chain grows it explores the parameter space, moving via a biased random
walk towards regions dhigher likelihood. After a sufficient number of positions have
been added to the chain, the set of accepted chain positions may be used to estimate post
calibration PDFs for the parameters. A thorough,-bteptep description of the MCMC
algorithm is pesented in Chapter 4 of this dissertation.

MCMC is used for a vast array of applications in countless fields, and we will not
attempt to cover the general MCMC literature here. We will focus instead on two aspects
of the literature. We will first discgsthe literature relevant to the development and
implementation of the delaya@jection adaptive Metropolis (DRAM) algorithm which is
used in this work, and then we will describe recent work in which MCMC is used for the

calibration of parameters relevanthypersonic flows.

DRAM

The MetropolisHastings algorithm is the basis for most other MCMC algorithms,
including the more advanced DRAM algorithm used in this work. A detailed description
of the basic Metropolislastings MCMC algorithm is found in diney (1994), and the
details of MetropolisHastings are also presented in Chapter 4. The DRAM algorithm
consists of two primary improvements to Metropdliastings. Both of these
improvements are intended to allow chains to converge to the postesécgpbration)

distribution with the use of fewer chain positions.
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The first improvement is called delayed rejection, and it was developed over the
course of several years by Tierney and Mira (1999), Green and Mira (2001), Mira (2001),
and Mira (2002). Wen delayed rejection is employed and the initial candidate position
is rejected, rather than immediately retaining the current position and drawing a new
candidate from the original proposal distribution, instead a candidate position is drawn
from a sepate, second stage proposal. This second stage proposal may incorporate
information about the rejected first stage candidate, or it may simply be a scaled version
of the first stage proposal. Delayed rejection can be carried out for an arbitrary number
of steps, and the equations are set up so that the chains remain both Markovian and
reversible.

The second improvement is the adaptation of the proposal covariance matrix
based on the previously accepted chain positions. This adaptation was first emgloyed b
Haario et al. (1999, 2001), and the algorithm which includes this adaptation is called
adaptive Metropolis. When using adaptive Metropolis, the proposal covariance matrix is
adapted at fixed intervals in order to incorporate information from the estyhof the
chain into the proposal distribution. Adaptive Metropolis allows the proposal distribution
to scale up or down as necessary in order to explore the parameter space better, and the
method can also adjust to account for coupling between taenpters.

When the two improvements described above are put together the resulting
algorithm is known as DRAM. This algorithm is described in detail by Hasrial.

(2006), and also in Chapter 4 of this dissertation. In addition to the description of the

algorithm, Haaricet al.go on to prove the ergodicity of DRAM.
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Calibration of Parameters Relevant to Hypersonic Flows

At least three recent publications have centered on the use of MCMC for the
calibration of parameters relevant to hypersonic flows.

In Miki et al. (2012a), calibrations were performed with MCMC based on both
synthetic data and based on data from shock tube experiments. A number of different
stochastic models were considered for the likelihood, including models which assume
additive eror and others which assume multiplicative error. The likelihood models also
differed in the way that they address potential dependencies between data points. In two
of the four models the data points were assumed to be independent of one another, while
in the other two models a naliagonal covariance matrix was used in the Gaussian
likelihood equation in order to account for dependencies between nearby data points.
The parameter set being calibrated included parameters related to the stochastic
likelihood equation as well as physical parameters which are important for the shock tube
simulations.

In Panesiet al. (2012), parameter calibrations were performed with MCMC as
part of a Bayesian model validation study for data reduction models used for sheck t
experiments. Rather than calibrating and/or validating a computational model which
would be used to simulate the overall shock tube experiment, the purpose of this work
was to clarify the uncertainties which are present in the experimental dat@agtaf
the particular data reduction models which were used to convert the raw data (in the form
of photon counts received by an ICCD camera) into radiative intensities. The parameters
of interest in the data reduction model were related to the meanibly the model
accounts for theery short gate widthsf the camera.

In Miki et al. (2012b), the parameters of a model for atomic nitrogen ionization
were calibrated with MCMC based on radiative intensity data from a shock tube
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experiment. The modebasisted of a ordimensional plasma flow solver coupled with
a radiation solver. The posterior PDFs for the reaction rates were then compared with
values from the literature, and the poatibration value forthe reaction rate of the

atomic nitrogen ioizationwas found to be consistent with previous estimates of this rate.

MAJOR CONTRIBUTIONS OF THE CURRENT WORK

The current work makes contributions to a number of areas of scientific interest.
Some of these contributions are entirely new, and otildve the combination of
techniques which have not previously been integrated with one another.

This work includes several improvements to the modeling of hypersonic shocks
with the DSMC method. Most importantly, our technique allows a steady shodle prof
to be sampled from an unsteady, moving shock without the need for ensemble averaging.
When this technique is employed, the pstsdck conditions do not need to be knaoavn
priori, which is very valuable when simulating shocks in a chemically reacimgvgere
the postshock conditions will not usually be known initially. The DSMC code is MPI
parallel, as are all of the codes used in this work, and substantial effort was put into
proper load balancing to allow efficient scaling when simulating shogkilitionally,
we describe and test a modification to the standard TCE chemistry model which allows
for the correct simulation of reactions with rates which approach or exceed the elastic
collision rate.

Another significant contribution is the applicatioh global, Monte Carlo based
sensitivity analysis methods for the case of a stochastic simulation method such as
DSMC. A sensitivity analysis of this type does not appear to have been performed in the

past for DSMC. In the hypersonics field there hasnbsome past work which included
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global sensitivity analyses which are similar to those used here, as discussed in the
preceding section. Our work goes into more depth than those previous analyses,
however. In addition to making use of the mutual infdromas a second, more
sophisticated measure of sensitivity, we also introduce the concept of vasiaigteed
sensitivities. Variance weighting allows us to integrate our sensitivity profiles for a
vector Qol in an appropriate way in order to deternomnerall sensitivities for each
parameter. Finally, we demonstrate techniques to test whether a given sensitivity
analysis has sufficiently sampled the parameter space and also whether the simulations
are well enough resolved to provide a converged rdsultthe sensitivity of the
parameters. Having a practical way to address convergence is useful for a
computationally expensive problem where resolving every simulation to machine
precision and using millions of points in the sampling of the parametee spacnot
feasible options. The stochastic nature of DSMC makes the entire process even more
challenging. We describe a method for including DSMC stochastic noise as a parameter
in the sensitivity analysis, and we demonstrate that the mutual inforncaticaiccurately
measure the sensitivity of the simulation results to this noise related parameter in a way
that ¥ cannot.

Finally, when performing the synthetic data calibrations we employ multiple
scenarios and quantities of interest simultaneously ierda obtain welcharacterized
postcalibration PDFs. The ability to make use of several types of data from multiple
experiments simultaneously while solving the inverse problem is useful when performing
calibrations for highly coupled sets of parametas we show with our synthetic data
calibrations in this work.

In addition to the scientific contributions of the current work, it must also be

mentioned that a substantial codebase has been generated and tested and will continue to
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be used both by mysal my future work and by followon graduate students. Prior to
this work, there was no existing DSMC code which would have been suitable for the
research presented here, and having dmiuse code which was developed specifically
for the purposes of ssitivity analysis and parameter calibration will be a valuable asset
going forward. The sensitivity analysis codes used in this work also provide a variety of
capabilities which were not previously available to our group, especially the ability to

deal apropriately with a vector Qol.

DISSERTATION LAYOUT

Following this introductory chapter, the dissertation moves on to describe the
numerical methods used in this work. Chapter 2 covers the DSMC method including the
improvements and modifications used for shock simulations, Chapter 3 discusses our
sensitivity analysis techniques, and Chapter 4 describes the techniques used for the
solution of the inverse problem in order to calibrate parameters.

After the numerical methods have been laid out, the mauitsefrom this work
are presented. Chapters 5 and 6 cover the sensitivity analyses for the 0D relaxation and
the 1D shock, respectively, and Chapter 7 addresses the synthetic data calibration.
Finally, Chapter 8 sets out the conclusions we have drawmm finis work and discusses

potential future work which might be of interest.
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Chapter 2: DSMC Methodology

OVERVIEW

The DSMC code used in this wois based on the method described by Bird
(1994). The primary goal of the current work is to integrate DSMC with Bayesian
statistical methods, and therefore we have chosen to employ aestailished,
commonly understood DSMC algorithm. In the fututtke methods developed here
could be applied to more advanced DSMC techniques such as the vibrationally favored
dissociation model of Haas and Boyd (1993) or the sophisticated DSMC algorithm of
Bird et al. (2009).

In order to facilitate integration with viaus driver codes, the entire DSMC code
is written as a subroutine. It is capable of handling multiple species, each with its own
molecular properties. Both vibrational and rotational internal energies are included, along
with 5-species air chemistry, ihming dissociation, recombination, and exchange
reactions. It is currently set up to simulat® @elaxations and-D shocks. The code is
MPI parallel, and makes use of ensemble averaging (@rr@laxations) and adaptive

load balancing (for-D shock$ to appropriately distribute work across processors.

ELAsTIC COLLISIONS

Elastic collisions in the code are performed using the VHS collision model. VHS
parameters for the 5 species used in this worlslaogvn in Table 2.1. In this woMHS
parametersdr crossspecies collisions angsuallyobtained by a simple averaging of the
parameters for the two specigarticipating in the collision, but the code is capable of
employing specific VHS parameters for craggcies collisions as well, if desired. Fhi

feature is utilized during the sensitivity analysis for tHe felaxation.
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Table 2.1: Collision parameters for-8pecies airVHS parameters were compiled by
Ozawa (2008). Cand G are based on those found in Bird (1994), but have
been modi fied to account for the fact

10
Species e E:)l 0 Trer (K) G G
N, 0.65 3.11 1000 5.02 220.0
N 0.68 3.58 1000 - -
O 0.65 2.96 1000 23.17 153.5
@) 0.68 3.37 1000 - -
NO 0.65 3.41 1000 5.02 220.0

INELASTIC COLLISIONS

The LarserBorgnakke model (Borgnakke and Larson, 198%mployed foithe
modeling of particles with internal degrees of freedom within the DSMC framework.
This model is phenomenological in nature. The key aspect of the model is that some
fraction of collisions are regarded as inelastic, and in these collisions energyemay b
redistributed between the translational and internal modes. This redistribution is carried
out based on selections of pasilision internal energies from the equilibrium
distributions appropriate for the given mode at the collision energy. After thanh
energies have been assigned, the remaining energy is assigned to the relative translational
kinetic energy of the colliding particleBor a given inelastic collision, the pestllision
energies are chosen from a distribution based on the enetiggtqdarticular collision
rather than a distribution based on the overall cell properties. This allows significant
nonequilibriumto be present between the internal and translational modes at a given
point in the flowfield.

In this work, ptatioral modes of the diatomic species amssumed to be fully

excited. Each particle has its own value of rotational energy, and this variable is
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continuously distributed (rotation is not considered quantized due to the close spacing of
rotational levels). Particlesave either zero rotational degrees of freedom (monatomic
species) or two degrees of freedom (diatomic speciéeR)e parameter relevant to
rotational excitation and relaxation ig,Zhe rotational collision number. In our code, Z
i s def i pewha arsiosl /tah e probability of a mol ec
undergoing redistribution with the translational mode during any given collision. During
a collision, a separate random number draw is done for each colliding diatomic particle,
and based on thigne, both, or neither of the particles may undergo an exchange of
energy between the rotational and translational modes. In the current work, wextreat Z
as a constant (independent of collision partner and temperature) for all species with
rotational degees of freedom.

Unlike rotation, vibration is not assumed to be fully excited, and vibrational levels
are quantized. Each particle has its own vibrational level, which is associated with a
certain vibrational energy based on the simple harmonic oscilladalel. In a given
collision there i s foraeack eofliding diatem, gna & tardom | i t y .
number draw based on this probability determines whether that particle will exchange
energy between the vibrational and translational modes. Asrwitht a ty F @/, @
where Z; is the vibrational collision number. In the work described heyajepends on
collision temperature but not on collision partner, based on the expression
G 6jY  Q ! 2.1)
where G and G are constants, ¢y is the collision temperature as defined by Bird
(1994), and ¥ -viscesitytekpenert ferrthe givera dpeciesea@d G are
species specific, but they do not depend on the collision partner. The values used for

each speeis for G and G are obtained from Bird (1994), and are adjusted to account for
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the fact t hat Birdéds values were calibrated

here. G and G for the three diatomic species used in this work are listed in Pable

CHEMICAL REACTIONS

Chemical reactions in our code are handled by means of the TCE model. This
model treats the ratio of the cressction for a given reaction to the total collision cross
section as a function of the total energy (translationalimtetdnal) of the two colliding
particles. Bird (1994) lays out the process for determining the reactionsgctssn as a
function of the collision energy, and for determining the parameters of this function based
on the parameters of an Arrheniype rde equation. An Arrhenidtype rate equation
takes the form

QY ¥YQ R (2.2)
wher e s an d-spgcifia comstantsetss thé actovation energy for the reaction,
kp is the Boltzmann constant, and T is the temperature of the gas. This form is not
directly useful in DSMC because reactions and collisions in DSMC are handled by means
ofcrosssecti ons, and so the ARp)mbseheiusedto ghtair a met er
an equation for the cros®ction. Two such equations are derived in Bird (1994), one for
exchange and dissociation (tody) reactions, and one for recombination (tHredy)

reactions. The equation for tWmdy reactions is

J £
_ 1 :—I:‘l I (2.3)

t

and the equation for thrdeody reactions is

— > - (2.4)

t

w h e rrleiislthe ratio of the crossection for the given reaction to the total cross

section for interactions between the two particles. A and B are the main reacting species
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(not including the thirdb o d y ) U ifsaca osry mmeitcrhy i s equal t o
t wo i f ATer,= @BApdralwHS parameters for collisions between species A and
B, —fis the average number of internal degrees of freedom which contribute to the
collision energy, fiis the number density of the thilbbdy, m is the reduced mass of
speciesAandB, & s t he total collision energy (trans:t
gamma function. The above equation for tHpedy reactions assumes that the
activation enmgy for these reactions is zero, which is the case for all recombination
reactions which are relevant to figpecies air chemistry.

Bird (1994) assumes that the reaction cisestion will be small relative to the
VHS collision crosssection, which allowdor the VHS collision crossection to be
treated as the total cressction for use in the above equations. The advantage of this
assumption is that reaction cressctions only need to be calculated after a pair has been
accepted for collision, rathghan when the pair is initially selected. However, this
assumption issometimes noaccurate at high collision temperatures for several of the
reactions involved in fivspecies air chemistry, and it can lead to noticeable error in both
the reaction rateand the VHS collision rates in certain cases, as will be discussed in
detail later in this chapter In our work, we require the ability to vary the Arrhenius-pre
exponential constants over orders of magnitude while still retaining accurate reaction
rates (i.e. the actual reaction rates occurring in the DSMC code must match those
predicted by the Arrhenius rate equation for a given set of Arrhenius parameters at a
given temperature, after sufficient averaging to minimize statistical noise). To this end,
we have modified thenodelemployed by Bird (1994) so thatl of the reaction cross
sections are calculated after a pair is sele¢tedrder to computdir), but before the
collision is accepted. With thimode| r/ Ggin the above equations is actually’ s,

whi ch i s mor e accur at e based ong/ttbis deri va
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calculated for every potential reaction between species A and B, we can then obtain the
total crosssection

. p B " (2.5)

where vist he number of possible reactisthens bet we
used to determine acceptance or rejection of the given collision pair. If the collision pair
is accepted, a random number draw determines whether or not one of the reactions
occus . The probability of &l {fdrthatmeactioeandt i on i
the probabil ity o {la Findly Sotectbat ihelastic (out non s 0
reactive) collisions are included within the VHS collision cresstion. In pmciple, the
abovemodel could easily be applied for inelastic collisions as well, if separate-cross
sections were availabjsavoidbd i hgdpneadfdeld hat
would be expanded to include the inelastic collision esegsions. This is not done
because separate cresctions are not readily available for vibrational and rotational
transitions, so instead the LarsBargnakke model is used as described previously and
inelastic collisions are treated as a subset of VHS colBsidrhis is not a problem since
the VHS parametersfgand ¥) were presumably calibrated
the VHS crossection would represent both elastic and inelastic collisions.

Arrhenius rates for the reactions important for fspeciesair chemistry hve
been tabulated, for examply Guptaet al. (1989). In this work, we make use of the
forward rates provided by Gup# al, along with backward rates calculated based on a
matching with the equilibrium constant over a range of tenpes Table2.2 contains
the full list of reactions used in this work, along with the nominal Arrhenius parameters

for each reaction.
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Table 2.2: Reactions for Species air. Nominal Arrhenius forward rate parameters are
from Guptaet al.(1989), and backward rate parameters are based on a
matching with the equilibrium constant over a range of temperatures.

Forward Rate Backward Rate
# Reaction Coefficients Coefficients Oreaction
$ ' Ea S ' Ea
1 2N 2N +N, 8.0E13|-0.5/1.6E18|6.5E47|0.27| 0.0 |-16E18
2 IN>+ Nf 3N 6.9E8 [-1.5/1.6E18|4.8E46| 0.27| 0.0 |-16E18
3 IN+O ¥ 2N +0, 3.2E13|-0.5|1.6E18|6.5E47| 0.27| 0.0 |-1.6E18
4 IN,+Of 2N+ O 3.2E13|-0.5|1.6E18|6.5E47| 0.27| 0.0 |-16E18
5 N+ NOF 2N +NO |3.2E13|-0.5/1.6E18|6.5E47|0.27| 0.0 |-16E18
6 O,+No¥ 20 +N, 1.2E11|-1.0/8.2E19|1.8E47| 0.27| 0.0 |-8.2E19
7 O+ Nf 20 +N 6.0E12|-1.0/8.2E19|1.8647| 0.27| 0.0 |-8.2E19
8 20, 20 +O, 5.4E11|-1.0|/8.2E19|1.8E47| 0.27| 0.0 |-8.2E19
9 0,+0Of 30 1.5E10(-1.0|8.2E19|1.8647| 0.27| 0.0 |-8.2E19

100, + NOf 20 + NO |6.0E12|-1.0|8.2E19|1.8E47|0.27| 0.0 |-8.2E19
11INO tN,§ N+ O+N, |6.6E10|-1.5|1.0E18|2.1E46|0.27| 0.0 |-1.0E18

12NO+ Nf 2N+ O 1.3E8 |-1.5|1.0E18|2.1E46| 0.27| 0.0 |-1.0E18
13NO +O,# N+ O+0O, |6.6E10|-1.5|1.0E18|2.1E46|0.27| 0.0 |-1.0E18
14NO+ Of N + 20 1.3E8 |-1.5|1.0E18|2.1E46| 0.27| 0.0 |-1.0E18
152NO$ N + O+ NO 1.3E8 |-1.5/|1.0E18|2.1E46| 0.27| 0.0 |-1.0E18
16N, + Of NO + N 1.1E16| 0.0|5.2E19|2.5E17| 0.0 | 0.0 |-5.2E19
17NO+ G O+ N 5.3E21| 1.0 |2.7E19|1.6E18| 0.5 |5.0E20| -2.7E19

1-D SHOCK SIMULATION TECHNIQUE

Techniques for simulating-D, steady shocks with DSMC often require that the
postshock conditions be known initially. In the case to be simulated in this work, where
real gas effects (internal modes, chemistry, etc.) are present, the post shock conditions
will not be exactly knowra priori. Furthermore, if a steadyD shock is desired, some
form of artificial stabilization usually must be applied in order to keep the shock steady
within the computational domain, since in a nominaligadyl1-D flow the shock may
undergo a random alk in space. Other techniques make use of a 2D code and the
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assumption that &D profile extracted from a 2D bow shock simulation can be used as a
substitute for al-D shock, but this technique leads to a good deal of wasted
computational effort since ost of the 2D flowfield is not used for the desired profile.

Due to these concerns, we have chosen instead to simulate the development of an
unsteadyl-D shock. The flow in the domain is initialized with a Maxwellian velocity
distribution at the freestaen (preshock) temperature, with a bulk velocity moving to the
right. The right boundary of the domain is set as a specular wall. The left boundary of
the domain represents a freestream; it generates molecules entering the domain with a
Maxwellian velocity profile (offset by the freestream velocity) at the freestream
temperature.We use a uniform spatial grid throughout the 1D doma&iath this initial
setup, at the beginning of the simulation an unsteady normal shock forms and begins
propagating to th&eft. The initial setup and early shock motion are shown in Figudre

After a substantial amount of time has passed (50% of the total number of time
steps for the run), the shock has moved a significant distance away from the right
boundary, and the de begins sampling the upstream {pheck) and downstream (pest
shock) pressures. The sampling region for the downstream pressure is offset slightly
from the edge of the domain on the right side so that the pressure is not altered by the
localized effect of the wall boundary. The sampling regions are shown in the first image
of Figure 22. The shock continues to move while this sampling takes place over the
course of a number of time steps (10% of the total length of the run).

After this period of sapling the upstream (prghock) and downstream (pest
shock) pressures are known very accurately, and at this point the code begins to track the
shock location. At each sample interval, the pressure is caduddtevery point in the
domain. The pressum any given point is calculated from the gas equationjRFE,

where R is the gas constant for the mixtyres the mass density of the mixture, and T is
25



the total temperature of the mixture. After the pressure is calculatedymalized
pressure is obtainddr each poinbased on the equation
0 — (2.6)

where P is the pressure at a givelocation, R is the preshock pressure, ang B the
postshock pressure. This normalized pressure is then boxcar averaged to obtain a
smoothed value of & in each cell. The shock location is defined as the location at
which this boxcar averagedd? is equal to 0.5, as shown in the second enafjFig.
2.2. Note that this location does not need to correspond to anything of particular physical
importance in the shock profile, it is only important that the location be consistently
defined so that it moves with a constant speed and stays fis¢igtedo the shock front.
The shock location is tracked over a period of time (10% of the total length of the run) in
order to obtain a precise shock propagation speed, as shown in the third image af Fig.

Once a shock propagation speed has beennebta set of sample cells follows
the motion of the shock, with the set of sample cells moved each time sampling is
performed, based on the previously determined shock propagation speed. The final
image of Fig.2.2 shows the sample region which propagatgth the shock. In this

sample region, the shock can be viewed as steady.

PARALLEL |IMPLEMENTATION

The DSMC code is MPI parallelWhen simulating a D relaxation ensemble
averaging allows for multiple processors to work on a single simulation; eacespor
runs its own version of the relaxation with a different random number seed and the results
are averaged together at the end. This is the only practical means of running a single cell

DSMC calculation in parallel, and it is also very efficient. @ftha 1D shock is
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simulated ach processor is initially assigned a set of contiguous cells, and a given
processor handles all movement, indexing, collisions, reactions, and any other required
work on the particles within its set of cells. A particle whieaves the domain of one
processor is sent to the processor which owns the cell into which the particle has moved.
Periodically, domain reddancing is performesdo that the work performed in a given time

step is well balanced between all processors.
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Figure 2.1: Schematic showing the initial setup of the domain, the boundary conditions,
and the early motion of the shock.
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VERIFICATION

In order to test the modified TGEodelused inthis work and examine how well
the DSMC code reproduces the VHS collision rates and the Arrhenius reaction rates, we
ran a seaes of single step runs at various temperatures. For each such Hnpax0of
molecules was initialized with equal number fractions gf NL O,, O, and NO, and a
total number density of 1.0x30#/m®. The ratio of real to simulated particles was chose
so that there were ~5,000,000 simulated particles in the box (~1,000,000 of each species).
The code was then run for a single time step and the number of VHS collisions and the
number of each type of reaction were tabulated. These tabulated valueshermre t
ensemble averaged over a total of 320 shstpe runs (each with a different random
number seed). Since the focus was on instantaneous rates, the reactions and collisions
were not actually performed. Instead the code simply identified what typéecdction
was chosen and then left the properties of the colliding particle unchanged. This was so
that the properties of the gas did not change over the course of the single time step run.
To further ensure that the rates we are examining are re@@gemf instantaneous rates
at the given conditions, the time step chosen was short enough that the vast majority of
particles were not chosen for collisions or reactions at all. Finally, because the
recombination rates are so low, it is very difficdtdet reaction rates from the DSMC
code which are not dominated by statistical noise. In order to examine the recombination
rates, the entire process described above was performed a second time, after increasing
the preexponential constant for the recomdition rates by skorders of magnitude.

The Arrhenius rates are expressed as functions of a single temperature, and they
are not very meaningful when local thermal equilibrium does not eMmrefore, in
these test casedl species were initialized with a given overall temperature. For the
monatomic species this was simply the translational temperature, but for the diatomic
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species the distribution of internal states was initialized to an equilibrium at the given
temperéure (i.e. Tot = Tvib = Tyans = Tov). The TCEmodel does not require thermal
equilibrium, it is only necessary in order for comparison with Arrhenius reaction rates to
be meaningful. The above process was performed at a total of 64 temperatures between
5000 K and 25000 K, and in Figu&3 the results from the DSMC code are compared
with VHS collision rates based on kinetic theory and reaction rates based on the
Arrhenius rate equations. For clarity of the images, collision rates are only shown for
someof the species combinations, and reaction rates are only shown for some of the
reactions. The VHS collision rates, dissociation reaction rates, and exchange reaction
rates all come from the case with nominal recombination rate parameters. As mentioned
alove, in order to get resultshich are not dominated by noisige recombination rate
comparison is performed with much larger -psgonential constants for all the
recombination reactions (the predicted Arrhenius recombination rates are also calculated
with this higher preexponential constant, so the comparison between DSMC and
predicted rates is still valid). Note the extremely good agreement between the predicted
and actual rates for both VHS collisions and chemical reactions. Those rates not shown

hawe also been examined, and show similarly excellent agreement.

PROOF OF NECESSITY OF THE TCE M ODIFICATION

The modified TCE model used in this work does incur some additional
computational expense. How large of an additional expense depends on the ratio of
selections to VHS collisions, since the modification consists of performing the
cal cul aftyksavhenewdr a pair of particles is selected, rather than only if the pair

is chosen for a VHS collision. In the work presentee hétre computational egpse of
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each simulation was increased blghtly less than a factor of twarhen using the
modified model as compared to when using traditional TCE. Due to this additional

computational expense, it is important to justify the use of the mddifael.
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Figure 2.3. Instantaneous rates for VHS collisions and for selected reactions over a
range of temperatures. Number densities HfNN O,, O, and NO were all
set at 2.0x18 #/m°. The temperatures shown are total temperatures, and
the diatomic spees were initialized with their rotational and vibrational
modes in equilibrium with the translational mode. Note the excellent
agreement at all temperatures.
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While the traditional TCEmodel does fine with the nominal reaction rates,
reaction rates in thisvork are varied over aange of two orders of magnitu@ad in
some regions of the parameter space the majority of the reaction rates will be much
higher than the nominal values. Our code must be able to give accurate results even in
those cases, whicheans that the Arrhenius rates must be reproduced even when the
reaction rates are substantially higher than the VHS collision r&tesrder to test the
modified TCEmodelagainst traditional TCE, we performed another set of simulations
similartothaté scr i bed above, this time with s for
than the nominal value. A set of 64 temperatures was run with the mob@iednodel
and another sewas runwith traditional TCE. The results for the two procedures are
shown in Fgure2.4. It isvery clear from the figure thatwe want to accuratelynodel
the higher reaction ratege must use the modifiadodel Errors of greater than a factor
of three are present at higher temperatures when using the traditionahddeE This is
not surprising, since the rates for these reactions are higher than the VHS collision rates
between the reactant species. It is simply not possible for the tradimodalto get the
rates right, since with thamhodelreactionsare a subset of VH8ollisionsand there are
not enough VHS collisions to go around. Furthermore, in the caseofON Y NO + O
this is not even the only reactioetlveen these reactantsdissociation reaction is also
possible and occurs at a high rate. The reactior N N Y 3 N i eactianhe onl vy
between these reactaratsd thus the error for this reaction, while still nearly a factor of

two, is less thanthe errorfor® N Y NO + O.
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Figure 24. Instantaneous rates for selected reactimes a range of temperagas.
Initial conditions are the sameasinkRi¢g, but s for every rea
times higher than the nominal value. At higher temperatures, the Arrhenius
rates for the reactions shown are higher than the VHS rate for collisions
between the reactantyhe modified TCEnodelused in this work matches
the Arrhenius rates in spite of this, but the traditional h@ilel(which
assumegsctannatb el used wismopaple tomaichthet e

Arrhenius rates in this situation.
In order to furbher demonstrate the need for the modified T@&tlelin this work,
we also ran two shock simulations (with the same initial conditions as the shocks for the
sensitivity analysiswhich will be described in Chapter),6and in both of these
si mul at i overg reagtionfwas tendimes higher than the nominal value (this
represents the extreme corner of the parameter sphaich will be examined in the
sensitivity analysis). We used the modified T@&delin one of these simulations and

traditional TCE inthed t her |, and pNo(whichwid Bewlirtmain guamtity of
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interest in the sensitivity analysis for thédlshock)are shown in Figur@.5. There are
very substantial differences in the two profiles in the-aquilibrium region of interest,

andthus weagainconclude that we must use the modified Ti@&delin this work.
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Figure 2.5. Profiles of} no inside a shock at ~8000 m/klote that the profiles differ
significantly depending on whether traditional or modified TCE is uexnl.
theserunss f or every reaction is ten times
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Chapter 3: Sensitivity Analysis Methodlogy

OVERVIEW

We will use two sensitivity analysis methods in this work, one based on the
square of the Pearson correlation coefficieft &nd the second based on the mutual
information. Both of thee methods are global in natumad require a Monte Carlo
sampling of the parameter space. This sampling can be quite time consuming, but
fortunately we can use the same data set for both methods

Once the sampling of the parameter space is complete, we caléutate the
mutual information for each parameter. In cases where the Qol is a vector (i.e. we have
values for the Qol at a set of discrete points in space or time) we treat each cdmponen
the vector as a distinct, scalar Qol, and we calcufagmd the mutual information for
each of these scalar Qols. We can then plot sensitivities as a function of x (or time, as

appropriate).

SAMPLING THE PARAMETER SPACE

The type of global sensiity analysis described here is distinguished from a local
sensitivity analysis in several ways. First, in a global analysis all of the parameters are
varied simultaneously while in a local analysis the parameters are usually varied one at a
time. Secondthe global analysis allows the parameters to vary over the entire parameter
space, as opposed to only in a small range around their nominal values as is usually the
case with a local analysis. Furthermore, local analyses are usually based on calculating
partial derivatives of the Qol with respect to each parameter, while no derivatives are
calculated in the global analysis presented here. Instead, the global sensitivity analysis is
used to estimate the relative contribution of the uncertainty of eaemptar to the

overall uncertainty of the Qol.
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There are a number of methods for performing a global sensitivity analysis.
Many of the most advanced methods are intrusive, meaning that they require changes to
the algorithm and/or equations used to simudldkes physics. Others require the creation
of a surrogate model to be used in place of the actual model during the sensitivity
analysis. Due to the fact that DSMC simulations do not directly involve the solution of a
set of differential equations, commanmtrusive methods which are based on rewriting
differential equations are not practical. Creating a surrogate model is also a challenge
and proper creation of a surrogate model is a field of study in and of itself. Due to these
limitations, for this wok we have chosen a Monte Carlo based approach which is non
intrusive and which does not require the creation of a surrogate model. This choice is
also informed by the goal of making the techniques used here suitable for immediate
application by the DSMC ral rarefied gas dynamics communities, and a somewhat
simpler, easieto-understand method which does not require great knowledge of abstract
mathematics is more likely to be used in the near future by those communities.

The Monte Carlo method requiressampling of the parameter space, and the
dataset created by this sampling provides the input for the sensitivity analysis techniques.
The sampling of the parameter space proceeds as follows:

1) Boundaries are established for each parameter. In Bayesmas, this
means that we establish prior distributions for all of the parameters. These priors are
based on a combination of hard physical limits when those are present for a given
parameter within a given model, review of the available literature, gmerteudgment.

For example in the VHS model agreatest thande f or
would be physically incorrect.The priors are intended to incorporate estimates of the

uncertainty in these parameters, so that parameters whose vauasnaidered better
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known should be bounded more tightly than parameters whose true values are more
uncertain.

In principle, these prior distributions could be uniform, Gaussian, or any other
appropriate distribution. Using a Gaussian prior (presumadrhyeced at the nominal
value of the parameter from expert judgment or the literature) implies some degree of
confidence in that nominal value, with the level of confidence depending on the width of
the Gaussian used. In our case, we have very littled=rde in the nominal valuésr
many of our parameters, and the nominal value often depends on what particular prior
work is referenced. Therefore, in this work we will use the least informative possible
prior, a uniform distribution over a broad range éach parameter. The size of the range
will be set for any given parameter based on an estimate for the uncertainty in that
parameter, with the goal being to err on the side of overestimating the uncertainty rather
than underestimating it.

2.) A valuefor each parameter is selected based on a random number draw from the
prior distribution for that parameter. This process is performed individually for each
parameter (i.e. an independent random number is drawn for each parameter, so that the
values of tle various parameters at a sample point are independent of one another).

3.) A simulation is run for the scenario being examined (a OD relaxation at a given
initial temperature, a 1D shock with a given shock velocity, etc.) with the parameter
values selectkin the previous step. The results of this simulation are stored for later use.
Specifically, the value of a scalar Qol or a set of values of a vector Qol are saved. For
the time being, it will be assumed that the Qol is scalar (i.e. the value obthea®be
represented as a single number).

4.)) Steps 2 and 3 are repeated a-getermined number of times. Each sample is

independent of all of the others.
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The end result of the above process is a dataset containing the model output for
the Qolat a set of sample points in parameter space. Thus, for each sample point we
have Narameterst 1 NUMbers, corresponding to the values for each of the parameters and
one value for the Qol. This dataset can then be statistically analyzed to determine
sersitivities (based on the given Qol) for each parameter relative to the other parameters.
In order to calculate a sensitivity for each parameter, the full dataset is projected from its
original Noarameterst 1 dimensional space onto the tdionensional spee defined by the
given parameter and the Qol. This is shown for an example Qol and an example
parameter in Figure 3.1. The Pearson correlation coefficient and the mutual information
for a given parameter can then be calculated based on thifirtvemsioal projection of

the full dataset.

PEARSON CORRELATION COEFFICIENT
The Pearson correlation coefficient is the first of the two statistical measures used
in this work to quantify sensitivities for a set of parameteffie Pearson correlation

coefficientis given by the equation

i (3.1)
B B

where Nyc is thenumberof Monte Carlo samples of the parameter spadbe dataset

X; is the value of a given parameterttat {" sample poinfrom the datasetand Y is the
value ofthe Qol which is output by the model (for the given scenario and with parameter
values corresponding to thi sample poinfrom thedataset). We are not particularly
interested here in whether the correlation is thasior negativeandso we will actually

use f (the square of the Pearson correlation coeffiji@sour measuref sensitivity.
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Figure 3.1. Scatterplot showing values afhypotheticaQol vs. values of a parameter
d;. The dataset is obtained frarMonte Carlo sampling of the full
parameter space (for this hypothetical example), and is projected onto the
two-dimensional space shown.

The fact that scatterplots such as that shown in Figure 3.1 are projected onto a
two-dimensional space from the fuNpaameterst 1 dimensional space means that the
variation of the Qol with respect to all of the parameters is inherently incorporated into
the scatterplot, and it is for this reason that theatue for the scatterplot is useful as a
measure of sensiity for a given parameter. If a given parameter does not have a strong
effect on the Qol, then thé value for a scatterplot of that parameter vs. the Qol will be
low, because the variance of the Qol will be mostly explained by other parameters. If a
paameter has a strong effect on the Qol, however, then a relationship will be visible in
the scatterplot, and the correspondifgaiue will be relatively high. Figure 3.2 shows a

set of scatterplots which correspond to four different relationships be@viegpothetical

Qol and a hypothetical parametir In the upper left image, there is clearly almost no
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relationship between the parameter and the Qol. Virtually all of the variance of the Qol
must be explained by other parameters which were varige ionte Carlo sampling of

the parameter space. This qualitative analysis is also borne out by a vefyéduer In

the upper right image, it is apparent that the value of the parameter does have some effect
on the value of the Qol, but this effestlargely washed out by the variance of the Qol

due to all of the other parameters, resulting in a fairly [bwatue. In the lower left

image, a strong relationship between the parameter and the Qol is apparent, to the point
that the effect of this pameter on the Qol appears to be stronger than the effect of all of
the other parameters combined. This is confirmed by a Righlue. Finally, in the

lower right image, the variation of the Qisl almost completely explained by this one

parameter, and thé value approaches the maximum possible value of 1.

MUTUAL INFORMATION

The square of thé>earson correlation coefficient has the drawback that it cannot
accurately measure highly ndinear wrrelations, and we do not knaavpriori whether
the correlations between our parameters and our Qol will be lieaan example, the
scatterplot in Figure 3.3 shows an obvious relationship between a hypothetical parameter
and Qol, but the value of iis nearly zero because of the clear -fingarity of the
relationship.

A more sophisticated measure of sensitivity can be oldtaireen the mutual
information. In the context of sensitivity analysis, the mutual information represents a
measure of the di#rence between two PDFs. One of these PDFs is the actual joint
probability distribution for a given parameter and the Qol, and the other is a hypothetical

joint probability distribution for a case where the Qol and the parameter are assumed to
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be indepedent. The calculation of mutual information in this wéakgely follows the
procedure described in the work of Stewgral. (2002). The process is shown in

schematic form in Figures4- 3.7.

Figure 32. Scatterplos and corresponding waluesfor different hypothetical
relationships between a Qol aad p a r a.nSedtterplots dvhich are
tightly packed around an obvious trendline lead to high valués arid
indicate a strong relationship betwegrand the Qol.

The first step in the process is to normalize the data so that it has a mean of zero

and a standard deviation of one. This normalization process preserves any correlation
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