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This work is focused on the development of a hybrid DSMC/CFD

solver to examine hypersonic boundary layer flow over discrete surface rough-

ness. The purpose of these investigations is to identify and quantify the non-

equilibrium effects that influence the roughness-induced disturbance field and

surface quantities of interest for engineering applications. To this end, a new

hybrid framework is developed for high-fidelity hybrid solutions involving five-

species air hypersonic boundary layer flow applications.

A novel approach is developed for DSMC particle generation at a hybrid

interface for gas mixtures with internal degrees of freedom. The appropriate

velocity distribution function is formulated in the framework of Generalized

vii



Chapman-Enskog Theory, and includes contributions from species mass dif-

fusion, shear stress and heat fluxes (both translational and internal) on the

perturbation of the equilibrium distribution function. This formulation intro-

duces new breakdown parameters for use in hybrid DSMC/CFD applications,

and the new sampling algorithm allows for the generation of DSMC internal

energies from the appropriate non-equilibrium distribution for the first time

in the literature. The contribution of the internal heat fluxes to the overall

perturbation is found to be of the same order as the stress tensor components,

underscoring the importance of DSMC particle generation from the General-

ized Chapman-Enskog distribution.

A detailed comparison of the transport coefficients is made between

the DSMC and CFD solvers, and a general best-fit approach is developed

for the consistent treatment of diffusion, viscosity and thermal conductivity

for a five-species air gas mixture. The DSMC VHS/VSS model parameters

are calibrated through an iterative fitting approach using the Nelder-Mead

Simplex Algorithm. The VSS model is found to provide the best fit (within

5% over the temperature range) to the transport models used in the CFD

solver. The best-fit five-species air parameters are provided for general use by

the DSMC community, either for hybrid applications or to provide improved

consistency in general DSMC/CFD applications.

This hybrid approach has been applied to examine hypersonic boundary

layer flow over discrete surface roughness for a variety of roughness geometries

and flow conditions. An (asymmetric) elongated hump geometry and (sym-
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metric) diamond shaped roughness geometry are examined at high and low

altitude conditions. Detailed comparisons among the hybrid solution and the

CFD no-slip and slip wall solutions were made to examine the differences in

surface heating, translational/vibrational non-equilibrium in the flow near the

roughness, and the vortex structures in the wake through the Q-criterion. In

all cases examined, the hybrid solution predicts a lower peak surface heat-

ing to the roughness compared to either CFD solution, and a higher peak

surface heating in the wake due to vortex heating. The observed differences

in vortex heating are a result of the predicted vortex structures which are

highlighted using the Q-criterion. The disturbance field modeled by the hy-

brid solution organizes into a system of streamwise-oriented vortices which are

slightly stronger and have a greater spanwise extent compared to the CFD

solutions. As a general trend, it was observed that these differences in the

predicted heating by the hybrid and CFD solutions increase with increasing

Knudsen number. This trend is found for both peak heating values on the

roughness and in the wake.
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Chapter 1

Introduction

1.1 Motivation

Much of the motivation for this work is driven by the challenges en-

countered in predicting roughness-induced heating augmentation during the

Boundary Layer Transition (BLT) Flight Experiments that were designed and

flown as part of the STS-119, STS-125, and STS-128 missions [26]. A dis-

crete protuberance was integrated into the shuttle tile material (Figure 1.1)

for the BLT flight experiments, and this tile was affixed to the port side wing

on the Orbiter belly. The surrounding tiles were instrumented with pressure

transducers and thermocouples in efforts to characterize the onset of bound-

ary layer transition, and to measure the heating augmentation to the shuttle

surface as a result of this event (Figure 1.2). A priori calculations [8] made

by high-fidelity Navier-Stokes solvers indicated peak heating on the protuber-

ance that was four times higher than the peak heating measured during the

flight experiments. The undisturbed boundary layer flow was expected to be

within the continuum regime where the Navier-Stokes solution would be valid.

The presence of the roughness, however, introduces local flowfield gradients

including the formation of a shock, shear layer, and vortex structures. Un-

der these conditions, the use of the Navier-Stokes solver in the flow region

1



Figure 1.1: Shuttle tile with integrated protuberance (pre-flight).

 
American Institute of Aeronautics and Astronautics 

 
 

2 

 = density 
 =  catalytic efficiency 
 = molecular mean free path 

 = wedge half-angle, degrees 
 
Subscripts 
e edge conditions 
w wall conditions 

 freestream conditions 
 
Superscripts 
' hybrid domain coordinate system 
 

I . Introduction 

HE transition of boundary layer flow from a laminar to turbulent state has been the subject of study for many 
years. Predicting boundary layer transition is an important component of hypersonic vehicle design, as 

transition to turbulence can significantly alter the aerodynamic loads on the vehicle as well as cause a substantial 
increase in aerodynamic heating. In optimizing the design of a reentry vehicle thermal protection system, it is 
desirable to determine the altitude at which transition is expected to occur as well as the transition location along the 
body. This is a very complex problem, as there are many factors thought to affect transition location, including the 
boundary layer edge Mach number, crossflow, wall temperature, roughness, disturbances introduced from the 
freestream and structural vibrations.1  Recent progress has been made toward developing an understanding of the 
physical mechanisms responsible for roughness-induced boundary layer transition,11,14 but there remain many 
difficulties in understanding the complete transition process for either incompressible or compressible flow regimes. 
 A recent flight experiment was carried out as part of the STS-119 mission to address this issue.3  In the 
experiment, a fixed-height boundary layer trip was integrated into a tile on the Orbiter located midway between the 
main gear door and the wing leading edge (Fig.1).  Tiles instrumented with pressure sensors and thermocouples 
were used to gather transition onset data near the roughness and in the wake downstream, including one 
thermocouple positioned on the trip itself.  Additionaly, infrared images highlighting boundary layer transition on 

e gathered by a Navy P-3 Orion aircraft during a portion of the re-entry trajectory.  The 
freestream Mach number was approximately 15 at the onset of transition induced by the trip, and the roughness 
height k was approximately one quarter of the thickness of the approaching boundary layer.  Based on these 
conditions, initial estimates indicate that  was of O(10-2-10-3) in the region of the roughness, which, in terms of 
the trip height used in this experiment, implies that k is .  

T 

 
(a)                                              (b) 

 
Figure 1. Schematic of boundary layer trip location on O rbiter and cor responding infrared image. (a) 

F ixed height boundary layer trip positioned midway between the wing leading edge and the main gear door. 
Image taken from Ref.(3).   (b) Infrared image captured by Navy P-3 Orion aircraft during re-entry of Orbiter. 
Wedge of turbulent heating is seen downstream of boundary layer trip. Image taken from Ref.(8).  

 

Figure 1.2: STS-119 BLT Flight Experiment.

surrounding the roughness is questionable, and a non-equilibrium flow solver

such as DSMC is more appropriate. In order to investigate the importance

of non-equilibrium effects, this work is focused on the development of a hy-

brid DSMC/CFD solver for application to hypersonic boundary layer flow over

discrete surface roughness.
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1.2 Attributes of Hypersonic Boundary Layer Flow over
Discrete Surface Roughness

The disturbance field generated by hypersonic flow over discrete rough-

ness shares several attributes with incompressible boundary layer flows. As

an undisturbed laminar boundary layer (compressible or incompressible) ap-

proaches the roughness, the solid protuberance from the surface surface im-

poses an impulsive force on the flow. A complex disturbance field is generated

as the flow is pushed in both spanwise directions to pass along the sides of

the roughness, or is ejected upwards to pass over the top of the roughness. A

recirculation region as well as a horseshoe vortex system form upstream of the

geometry near the base (Figure 1.3). The legs of the vortices wrap around the

roughness which appear as counter-rotating streamwise-oriented vortex pairs

that extend downstream into the wake. A shear layer forms over the top of

the roughness, and at sufficiently high Reynolds numbers, this shear layer be-

comes unsteady, resulting in a periodic shedding of vortices that interact with

the legs of the horseshoe vortices downstream of the roughness. A recircula-

tion region may form immediately behind the roughness, and the wake flow is

initially dominated by low speed flow, forming a velocity deficit immediately

downstream of the roughness. The counter-rotating vortices work to pull high-

speed flow from the outer boundary layer down toward the wall in the portion

of the wake between the vortex pair. In the same way, low-speed flow near

the wall is lifted upwards in the region of the wake outside of the vortex pair.

This mechanism works against the velocity deficit, and after a sufficient dis-
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Figure 1.3: Vortex system formed upstream of hemispherical bump in M=3.7
flow.

tance downstream of the roughness (referred to as the inversion length), the

wake flow becomes dominated with high-speed flow due to the presence of the

streamwise vortices.

Additional flow features arise when considering hypersonic boundary

layer flow over roughness, due to compressibility effects. A bow shock forms

on the windward side of the roughness, forming a complex shock-boundary

layer interaction region upstream of the roughness (Figure 1.4). After the

flow is processed by the shock, an expansion region forms in order to turn the

flow as it passes over the leeward portion of the roughness, and a relatively

weak recompression shock forms to turn the flow parallel to the wall in the

wake of the roughness. These structures introduce local pressure gradients

which are imposed on the disturbance field surrounding the roughness. The

vortex structures (mentioned previously) that are induced by the presence of

the roughness not only impact the wake flow, but they also have a profound

impact on the surface properties (including shear stress and heat flux) in the
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Figure 1.4: Temperature contours of M=3.7 flow past hemispherical bump
(slices at spanwise center (left), planview (right)).

wake of the roughness. In addition to these new flow structures, the very

nature of hypersonic flows introduces new thermo-chemical phenomena that

must be considered, including vibrational excitation, chemical reactions, and

other real gas effects.

The roughness-induced disturbance field generated at the surface of a

vehicle during hypersonic re-entry or high-altitude flight is characterized by

multi-scale, multi-physics phenomena, and may include regions of both near-

continuum and non-equilibrium flow. In general, the most significant non-

equilibrium effects are observed within boundary layers and shock waves, where

the gradient length scales of macroscopic flow quantities are comparable to the

local molecular mean free path. While the details of non-equilibrium processes

are established at the microscopic scale, their influence on the macroscopic

description of the overall system, including heat loads, aerodynamics, and

gas/surface interactions, can be substantial. Thus, it is necessary to accurately

model these multi-scale flows in order to inform important design decisions.
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1.3 Molecular Nature of Gases

At the most detailed level, the state of a system is determined by the

random thermal motion of molecules and interaction of molecules through

collisions. Within the system, each molecule possesses the intrinsic properties

of mass, momentum and energy, and each molecular interaction is determined

according to the aggregate external force fields (i.e., interaction potentials)

of the participating molecules. A collisional encounter results in an exchange

of mass (in the case of chemical reactions), momentum and translational and

internal energy between the molecules. The subsequent post-collision motion

of the molecules serves to diffuse the mass, momentum and energy throughout

the fluid volume.

Depending on the density of the gas, simplifying assumptions may be

made regarding the motion of molecules between collisions and the types of

collisions that occur. This work is restricted to the consideration of dilute

gases, and so it is assumed that the molecular dimensions are small relative

to the mean distance between molecules. Furthermore, it is assumed that the

overwhelming majority of molecular collisions in dilute gases may be regarded

as binary.

In the absence of transport fluxes, the thermal velocities of molecules

in the gas follow an equilibrium Maxwellian velocity distribution. This corre-

sponds to the inviscid limit in which the local gradient-based Knudsen number

Kn∇Q =
λ

Q/∇Q (1.1)
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Figure 1.5: Local Knudsen number limits of molecular and continuum models.
(corresponding solution methods are shown in gray)

defined as the ratio of the molecular mean free path to a characteristic gradient-

based length scale, goes to zero. From a macroscopic point of view, this limit

corresponds to the inviscid Euler equations (Figure 1.5).

When gradients in macroscopic properties within the flowfield are not

negligible, translational nonequilibrium gives rise to mass diffusion, viscous

stresses and heat conduction in the gas. In cases where the local Knudsen

number remains less than approximately 0.1, the velocity distribution describ-

ing the thermal velocities of molecules in the gas exhibits a small departure

from the equilibrium distribution. In this regime, a continuum representa-

tion of the flow is still valid, but the Navier-Stokes equations are required

for an accurate solution. As will be discussed in Chapter 2, the closure of
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the Navier-Stokes equations is made through the expression of the transport

fluxes in terms of gradients of macroscopic quantities (e.g., mass diffusion

flux, viscous stresses and Fourier heat flux). Furthermore, the formulation of

the Navier-Stokes conservation equations via the Chapman-Enskog expansion

requires that the departure of the velocity distribution from equilibrium is

small. Thus, a continuum description of a flowfield through the solution of the

Navier-Stokes equations is valid so long as the macroscopic expressions for the

transport fluxes hold.

The Navier-Stokes equations begin to fail in regions of strong transla-

tional nonequilibrium where Kn∇Q > 0.1, such as within a shock or boundary

layer flow. In these regions, the gradients of the macroscopic quantities be-

come sufficiently large such that their length scale is of the same order as the

local molecular mean free path. The expressions for the transport terms in the

Navier-Stokes equations are no longer adequate. Under these circumstances,

higher fidelity kinetics-based methods for the solution of the Boltzmann equa-

tion must be used to solve the flowfield at the microscopic scale. A kinetics-

based approach allows for a microscopic or molecular representation of the

gas, in that the position, velocity and internal energy states of the molecules

are tracked. This molecular information is then used to provide a macroscopic

description of the gas, without making any assumptions a priori regarding

the underlying velocity distribution describing the molecules. This feature

makes kinetics-based approaches highly desirable for the accurate solution of

nonequilibrium or rarefied flows. These approaches are valid across the full
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range of flows, from continuum to free-molecular (Figure 1.5).

1.4 Hybrid Methods for Multiscale Flows

Many hypersonic flows of interest to the engineering community lie

within the continuum regime (i.e., Kn∇Q < 0.1) where the flow is near equilib-

rium, and the Navier-Stokes conservation equations may be applied. Methods

for the solution of the Navier-Stokes equations using computational fluid dy-

namics (CFD) have been widely developed and successfully applied for a range

of aerospace applications, as they allow for a reasonably accurate and relatively

efficient solution of complex high-enthalpy flow problems. CFD methods have

been extended to include models for multiphysics phenomena, including ther-

mal and chemical nonequilibrium, ionization and radiation, surface thermal

and velocity slip, surface catalysis and ablation, as well as models for transi-

tional and turbulent flows.

As mentioned previously, the Navier-Stokes solutions fail in regions of

strong translational nonequilibrium. Therefore, the application of CFD solvers

for flowfield solutions involving regions of nonequilibrium, such as shocks and

boundary layers, is not appropriate, and the accuracy of the CFD solutions is

questionable. In these regions, however, high-fidelity kinetics-based methods,

such as direct simulation Monte Carlo (DSMC) [2], may be used to accu-

rately capture non-equilibrium effects that drive important thermo-chemical

processes. The DSMC method was introduced as a direct, physical approach

for the solution of the Boltzmann equation, by emulating the discrete molecu-
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lar structure of the gas using simulated particles. Although this work focuses

on the DSMC method, it should be mentioned that other approaches have

been developed for the approximate solution of the Boltzmann equation, such

as discrete velocity methods (DVM) and the Bhatnagar-Gross-Krook (BGK)

model.

The DSMC method has also been widely developed and includes mod-

els for a variety of collision cross sections, as well as models for internal energy

exchange and relaxation, several chemistry models for dissociation, recom-

bination and exchange reactions, surface catalysis and high-fidelity surface

interaction models, and approaches for including effects from ionization and

radiation. While the DSMC solution is valid from free-molecular to continuum

regimes, the time step and cell size requirements become computationally pro-

hibitive in the continuum limit. It is precisely in this regime, however, that

a CFD solver may be employed. Thus, a combined DSMC/CFD hybrid ap-

proach is often adopted as a way to capture rarefaction effects by solving

regions of translational nonequilibrium using DSMC, while capitalizing on the

computational efficiency of CFD in near equilibrium regions.

1.5 Overview

While hybrid methods have been developed and successfully applied for

a variety of flow scenarios, the detailed formulation of these approaches limits

their application to simple (single species, monatomic) gases. Many hypersonic

flows of interest to the engineering community, however, require the solution
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of a system involving gas mixtures with internal energy in addition to complex

physical phenomena. As evident by the post-flight analyses of the BLT Flight

experiments, the challenges faced in modeling the flow over discrete surface

roughness underscore the need for improved hybrid and multiscale approaches.

1.5.1 Scope of Dissertation

The objective of this work is to develop a general, consistent hybrid

DSMC/CFD approach, with application to hypersonic boundary layer flow

over discrete surface roughness. The hybrid approach allows for an efficient

yet detailed solution of the nonequilibrium disturbance field generated by the

roughness. This capability is necessary in order to understand and quantify

the influence of rarefaction in the multiscale flow application examined in this

work. The flow conditions examined are representative of typical laminar

boundary layer edge conditions on the shuttle orbiter belly during early stages

of a reentry trajectory. Therefore, the hybrid approach presented here has

been extended to include effects of species diffusion and heat flux from internal

energy modes for application in a five species air mixture. Ionized or chemically

reacting flows are not considered in the present work.

Hybrid methods require a careful treatment of the physical models em-

ployed in the CFD and DSMC solvers. Although significant modification of

the DSMC solver was required for this hybrid application, this work utilized

(where possible) the existing models available within the DSMC and CFD

solvers. This work introduces an approach for achieving consistency in the
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transport properties of mass diffusion, viscosity and thermal conductivity be-

tween the two solvers. A consistent approach for vibrational thermal relaxation

is also employed. A novel approach for hybrid particle generation is also pre-

sented for the five species air mixture, which can be applied for general gas

mixtures with internal energy. This approach allows for the sampling of parti-

cle internal energies from a non-Boltzmann distribution for the first time in the

literature. Additional modifications were made to the DSMC solver to allow

for the large scale simulations necessary for the three-dimensional boundary

layer flow simulations. The major efforts and contributions of this dissertation

are summarized below.

• Devised an approach for achieving consistency in transport properties

between DSMC and CFD solvers, including species diffusion, mixture

viscosity, and translational and internal thermal conductivities.

• Formulated a novel approach for hybrid particle generation in nonequi-

librium flows involving gas mixtures with internal energy, based on Gen-

eralized Chapman-Enskog Theory.

• Implemented Millikan and White thermal relaxation rates (with Gimelshein

correction factor) and Park’s high temperature correction in DSMC solver

and libraries.

• Modified DSMC solver to examine influence of near-wall cell population

on the predicted surface heat flux.
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• Implemented new hybrid particle generation algorithm in DSMC libraries,

preprocessors and solvers.

• Modified DSMC libraries, preprocessors and solvers to enable simulations

with unprecedented number of simulated particles.

• Generated and compared continuum and hybrid flowfield solutions for

various roughness geometries and conditions relevant to aerospace appli-

cations.

• Analyzed disturbance velocity field in wake of roughness using Q-criterion

for vortex structures in CFD and hybrid solutions; established relation-

ship between vortex strength/size and observed surface heating in the

wake of roughness.

• Established general trends in the differences in CFD/hybrid predicted

peak surface heating with respect to the local Knudsen number.

1.5.2 Outline

The discussion in this chapter has provided an introduction to the mo-

tivation of this work, the challenges that are faced in modeling multiscale,

multiphysics flows, and the tools that must be developed to address these

problems. Chapter 2 outlines the relevant concepts from kinetic theory upon

which the hybrid framework is constructed, as well as the details of the CFD

and DSMC solvers used in this work. Chapters 3 and 4 discuss in detail the

generation of the hybrid solution, including a new algorithm for hybrid particle

13



generation and corresponding breakdown criteria. A consistent treatment of

the transport properties is also discussed. In Chapter 5, the three-dimensional

hybrid flowfield solutions are presented in which a variety of surface rough-

ness geometries and conditions are examined. Convergence requirements of

both the CFD and hybrid solutions are discussed, and comparisons are made

between the flowfield and predicted surface flux quantities generated by the

CFD and hybrid solutions. Computational requirements of the CFD and hy-

brid solutions are also presented. The results from this work are concluded in

Chapter 6, and recommendations are made for future work in this field.
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Chapter 2

Kinetic Framework of Hybrid Method and

Numerical Flow Solvers

2.1 Overview

In this chapter, the governing equations used to model the flowfields of

interest from both a continuum and molecular perspective are presented. The

scope and progression of the material discussed in this chapter is intended to

serve two purposes. The first is to provide a molecular interpretation of macro-

scopic gas dynamics and transport processes, and to establish the relationship

between (and limitations of) the continuum and kinetic approaches used in

this work. The second purpose of this chapter is to develop the fundamen-

tal concepts established from kinetic theory that provide the framework from

which the hybrid approaches, outlined in Chapters 3 and 4, are constructed.

This chapter begins with a brief discussion of the Boltzmann equation

and the equilibrium Maxwellian distribution. The focus is then shifted to

nonequilibrium gas flows, with emphasis on Chapman-Enskog Theory. The

Chapman-Enskog perturbation function is introduced, and the significance of

the Chapman-Enskog perturbation within the hybrid framework is discussed.

The formulation of the Navier-Stokes equations from the Chapman-Enskog
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expansion is presented next. An important relationship is established between

the molecular collision processes described by the collision integrals and the

continuum definition of transport fluxes.

The next sections present the CFD and DSMC solution methods used

in this work, and the physical models employed within each solver. Finally,

a review of previous work in the area of hybrid CFD/DSMC approaches for

continuum/rarefied flows is presented.

2.2 Kinetic Theory

2.2.1 Boltzmann Equation

For a simple (dilute gas) system comprising a single, monatomic gas

species, the Boltzmann equation may be used to provide a description of the

evolution of this system in terms of the velocity distribution function, f(C).

The Boltzmann equation (neglecting external forces) is expressed in the form

∂

∂t
[nf(C)] + C · ∂

∂x
[nf(C)] =

∫ ∞

−∞

∫ 4π

0

n2 (f ′f ′1 − ff1) gσdΩdC1. (2.1)

The dependent variable, f , in this equation represents the fraction of molecules

that belong to a particular velocity class at a specified time and spatial loca-

tion.

The first term on the left hand side of (2.1) represents the rate of

change of the number of molecules belonging to a specified velocity class in

a differential volume in physical and velocity space. This rate of change has
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contributions from a convection of molecules across the differential volume

surface (second term on left hand side of (2.1)), as well as from particle colli-

sions, according to the collision operator on the right hand side of (2.1). The

collision operator expresses the effect of two competing replenishing/depleting

processes during binary molecular collisions. Replenishing collisions result in

a molecule with a post-collision velocity belonging to the specified class. In

depleting collisions, molecules with pre-collision velocities belonging to the

specified class are removed after collision. The collision operator thus rep-

resents the total rate of increase of molecules to the specified velocity class

through collisions, given by the integration over all scattering angles and all

possible velocities of the collision partner.

When the total number of depleting collisions of molecules in a velocity

class balances the total number of replenishing collisions, the flow is said to

be in equilibrium. The velocity distribution function in this special case is the

equilibrium Maxwellian distribution function

f (0) =

(
m

2πkbT

)3/2

exp−mC2/2kbT . (2.2)

When the pressure tensor and heat flux vector are computed assuming this

distribution, the pressure tensor reduces to the thermodynamic pressure and

the heat flux vector is zero. Substitution of these results into the mass, mo-

mentum and energy conservation equations yields the inviscid Euler equations.

[12, 21]
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2.2.2 Chapman-Enskog Theory and the Navier-Stokes Equations

Under conditions of weak non-equilibrium, the velocity distribution de-

scribing the thermal velocities of molecules within the flow exhibits a small

departure from the equilibrium (Maxwellian) distribution. In this case, the

solution to the Boltzmann equation may be obtained using the Chapman-

Enskog perturbation method. In the Chapman-Enskog approach, the distri-

bution function f is expanded as a power series in a small parameter ε, which

is a measure of the degree of nonequilibrium of the gas flow. To first order,

the perturbed distribution function is expressed as

f (1) = f (0)
(
1 + φ(1)

)
, (2.3)

where φ(1) is the perturbation of the equilibrium distribution to first order.

Using the method of Chapman and Enskog, substitution of this distribution

into the Boltzmann equation results in a general form for the perturbation,

φ(1) = − 1

n
A(C)C · ∇ log T − 1

n
B(C)

(
CC− 1/3C2I

)
: ∇v. (2.4)

Using this expression for the perturbation, the perturbed distribution in (2.3)

may be used to compute the first-order corrections to the pressure tensor and

heat flux vector. To first order, the pressure tensor correction is given as

p(1) =

∫
mCCf (1)d3C = −1

5
kbT [B,B] S. (2.5)

In the evaluation of the integrand, the term in the perturbation involving A(C)

is odd in C and drops out, and so the pressure tensor is expressed in terms of
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the bracket integral [B,B] and the rate of shear tensor S, which is given as

S =
1

2
(∂jvi + ∂ivj)−

1

3
∂kvkδij. (2.6)

At this point, the kinetic definition of the coefficient of viscosity is intro-

duced, which is expressed in terms of the bracket integral of the tensor B =

B(C) (CC− 1/3C2I),

µ =
1

10
kbT [B,B] . (2.7)

Thus, combining the equilibrium result for thermodynamic pressure and the

first order correction from (2.5), the pressure tensor to first order in the

Chapman-Enskog approximation is

p = pI− 2µS. (2.8)

Similarly, the correction to the heat flux vector is given as

q(1) =

∫
1

2
mC2Cf (1)d3C = −1

3
kbT [A,A]∇ log T. (2.9)

In this case, the term in the perturbation involving B(C) drops out, as the

integrand in (2.9) is odd in this term. The heat flux vector is expressed in

terms of the bracket integral [A,A] of the vector A = A(C)C, and the kinetic

definition of the coefficient of translational thermal conductivity is introduced

Ktr =
1

3
kb [A,A] . (2.10)

The heat flux vector to first order in the Chapman-Enskog approximation is

thus

q = −Ktr∇T, (2.11)
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as there is no contribution from the (zero-order) equilibrium result.

Substitution of the Chapman-Enskog results from (2.8) and (2.11) into

the mass, momentum and energy conservation equations (absent body forces)

results in the Navier-Stokes equations

1

ρ

dρ

dt
= −∇ · v (2.12)

ρ
dv

dt
= −∇p+ 2µ∇ · S (2.13)

ρ
dT

dt
= −2m

3kb
(−∇ ·Ktr∇T + p∇ · v − nµS : ∇v) (2.14)

The current discussion has been limited to single species gases with no internal

structure; however, as discussed in the next section, the Navier-Stokes equa-

tions are easily extended to enable the modeling of gas mixtures with internal

degrees of freedom, which is the focus of this hybrid work.

At this point, the Navier-Stokes equations in (2.12)-(2.14), as well as

the first-order Chapman-Enskog perturbation in (2.4), are expressed in terms

of the unknown quantities A and B. The next task is to introduce the so-

lution of the bracket integrals [A,A] and [B,B] found in the expressions for

the transport coefficients µ and Ktr. This is an important step that provides

closure of the Navier-Stokes equations and allows for a more convenient repre-

sentation of the perturbation φ(1). Moreover, this step introduces the collision

integrals which serve as an important connection between the two numerical

methods used in this hybrid work.
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2.2.3 Collision Integrals and Transport Coefficients

The solution of the bracket integrals requires knowledge of the molecu-

lar interaction potentials, and with the exception of the Maxwellian molecule,

an exact solution is not possible. Therefore, an approximate solution method is

used which involves an expansion of the trial functions a and b (corresponding

to the solution of [A,A] and [B,B], respectively) in finite linear combinations

of the Sonine polynomials. A brief outline is presented here to provide conti-

nuity in the discussion of the later chapters and appendices, but the details of

this formulation are discussed in Chapman & Cowling and Ferziger & Kaper

[12, 21].

Recalling the expression (2.7) for the coefficient of viscosity, the trial

function b is expanded in the Sonine polynomials

S(n)
v (x) =

n∑

p=0

Γ(v + n+ 1)

(n− p)!p!Γ(v + p)
(−x)p =

{
1 if n = 0

v + 1− x if n = 1
(2.15)

such that

b =
n−1∑

p=0

bnpS
(p)
5/2(C

2)

(
C C − 1

3
C 2I

)
. (2.16)

It can be shown that the bracket integral [B,B] can be expressed in terms of

the coefficients bnp such that

[µ]n =
1

10
kbT [B,B] =

1

2
kbTb

n
0 (2.17)

where the coefficients bn0 are determined from the equations

n−1∑

q=0

Hpqbnq =
2

kT
δp0 p = 0, ..., n− 1. (2.18)

21



The coefficient Hpq in (2.18) is defined in terms of the bracket integral (fol-

lowing from (2.16))

Hpq =
2

5kbT

[
S
(q)
5/2(C

2)(C C − 1

3
C 2I), S

(q)
5/2(C

2)(C C − 1

3
C 2I)

]
. (2.19)

Bracket integrals of the Sonine polynomials similar to the form shown in (2.19)

appear frequently in transport property calculations, and are often expressed in

a more compact form involving the Ω-integrals (or collision integrals) defined

as

Ω(l)(r) = 2π

(
kbT

2m

)1/2 ∫ ∞

0

∫ ∞

0

e−g
2

g2r+3{1− coslχ} b db dg. (2.20)

Many bracket integrals have been evaluated in terms of the corresponding

collision integrals and are available in tabulated form for calculation of the

transport coefficients [21, 38]. The first order (n = 1) approximation to the

coefficient of viscosity [µ]1 may now be evaluated in terms of the collision

integrals. The coefficient b10 must first be determined from (2.18), for p, q = 0,

such that

b10 =
2

kbTH00
, (2.21)

and the coefficient H00 reduces to

H00 =
8

5kbT
Ω(2)(2). (2.22)

Finally, the coefficient of viscosity is

[µ]1 =
5kbT

8Ω(2)(2)
. (2.23)
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Following the same procedure for the coefficient of thermal conductivity

(2.10), the trial function a is expanded in the Sonine polynomials such that

a = −
(

m

2kbT

)1/2 n∑

p=1

anpS
(p)
3/2(C

2)C . (2.24)

The coefficient of thermal conductivity can then be expressed in terms of the

coefficients anp such that

[Ktr]n =
1

3
kb [A,A] =

5

4
kba

n
1 , (2.25)

where the coefficients an1 are determined from the equations

n∑

q=1

Λpqanq =
4

5k
δp1 p = 1, ..., n. (2.26)

Similar to (2.19), the coefficient Λpq is defined as the bracket integral

Λpq =
8m

75k2bT

[
S
(q)
3/2(C

2)C , S(q)
3/2(C

2)C
]
. (2.27)

For the first order approximation of the thermal conductivity, the coefficient

Λ11 reduces to

Λ11 =
16

25cvkbT
Ω(2)(2), (2.28)

and the coefficient of thermal conductivity to first order in the Sonine polyno-

mials is

Ktr =
25cvkbT

16Ω(2)(2)
. (2.29)

The collision integrals Ω(l)(r) appearing in the expressions for the trans-

port coefficients are an important quantity in the hybrid framework, as they
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provide a connection between the macroscopic transport fluxes and the micro-

scopic details of binary collisions. Within the expression (2.20), the portion

Φ(l) = 2π

∫ ∞

0

(1− coslχ)b db (2.30)

represents the total interaction cross-section. The collision integrals thus rep-

resent an (orientational and thermal) average collision probability between

two molecules. Therefore, given a representation of the total interaction

cross-section or the molecular interaction potential, the collision integrals and

Chapman-Enskog Theory may be used to determine the transport coefficients

and transport fluxes of a gas system. This step provides closure to the Navier-

Stokes equations, as the transport fluxes in (2.12)-(2.14) are now completely

specified. Moreover, given any representation of the collision integral (e.g.,

collision cross-section model, interaction potential, molecular beam scattering

data, etc.), the results from Chapman-Enskog Theory allow for the complete

description of the transport properties in a gas system. As will be discussed

later in Sections 2.3 and 2.4 and Chapter 4, this is an important attribute

within the DSMC/CFD framework. The transport of mass, momentum and

energy is achieved in different ways within each solver, and so the ability to

quantify and calibrate the transport model parameters is a necessary step for

a consistent treatment of transport properties within a hybrid solution.

The Chapman-Enskog Theory also provides a connection between the

macroscopic transport fluxes (determined from the solution of the Navier-

Stokes equations), and the non-equilibrium distribution describing the molec-

ular thermal velocities at the hybrid interface. This connection is established
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through the perturbation (2.4). Recalling the perturbed (non-equilibrium)

distribution function given in (2.3), the perturbation was expressed in general

form in terms of the vector A = A(C)C and the tensor B = B(C)(CC −

1/3C2I). Using the results from the trial functions a (2.24) and b (2.16), the

functions A and B may be determined to first order in Sonine polynomials as

A = −
(

m

2kbT

)1/2
4Ktr

5kb

(
5

2
− C 2

)
C , (2.31)

B = − 2µ

kbT

(
C C − 1

3
C 2I

)
. (2.32)

After substitution of these expressions into (2.4) and some simple algebra,

the perturbation may be expressed in terms of the transport flux quantities

obtained from the solution of the Navier-Stokes equations

φ(1) = (qxCx + qyCy + qzCz)

(
2

5
C 2 − 1

)

−2 (τxyCxCy + τxzCxCz + τyzCyCz)

−
(
τxxC

2
x + τyyC

2
y + τzzC

2
z

)
.

(2.33)

This result allows for the generation of the DSMC particles from the proper

non-equilibrium distribution as determined from Chapman-Enskog Theory

(2.3), and particles are generated by sampling this distribution prescribed

at the hybrid interface. The hybrid interface is the computational boundary

between the CFD and DSMC computational domains, and this interface en-

ables the passing of flux information between the two individual solutions. The

details of the hybrid interface mechanics are discussed at the end of Chapter

3.
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At this point, it is convenient to evaluate the roadmap of the hybrid

framework discussed in this chapter. The formulation of the Navier-Stokes

equations from Chapman-Enskog Theory has been outlined for a simple gas,

and the transport fluxes (expressed in terms of the collision integrals) were

presented, providing closure for the Navier-Stokes equations. The Chapman-

Enskog framework also provides a consistent approach for hybrid DSMC par-

ticle generation, which will be explored in detail for gas mixtures with internal

energy in Chapter 3. The collision integrals are an important component of

the hybrid framework and will be revisited throughout this work. Their util-

ity in achieving consistency in the transport coefficients will be examined in

Chapter 4. The material introduced in this section was meant to provide a

simplified overview of the kinetic theory and general concepts employed for

construction of the hybrid approach. The next sections shift focus toward the

details of the CFD and DSMC solvers used in this work, with emphasis on

the physical models and their range of applicability. An overview of existing

hybrid approaches is provided in the following section.

2.3 CFD Method

Computational fluid dynamics (CFD) methods have been widely devel-

oped as a means for providing accurate and efficient solutions to the Navier-

Stokes equations. As mentioned in the previous section, the Navier-Stokes

equations achieve closure through the Chapman-Enskog approximation of the

transport fluxes. Thus, the application of CFD methods are limited to con-
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tinuum, near-equilibrium flows. In this section, a more complex five-species

air system is considered, and the physical models employed within the DPLR

solver for the flowfield solutions considered in this work are presented and

discussed.

2.3.1 DPLR solver for continuum flows

The continuum flowfield solutions used in this hybrid work are gener-

ated using the DPLR solver [88]. The DPLR software suite was developed

at NASA Ames Research Center as a tool for modeling the aerothermody-

namic environments of many (re-)entry vehicles for Earth and Mars applica-

tions. DPLR is a parallel, structured, finite-volume code for the solution of the

Navier-Stokes equations. The flow in the computational domain is initialized

to the specified freestream conditions, and the solution is marched forward

in time using implicit DPLR time integration, until steady state is reached.

Time accurate (unsteady) calculations are not considered in this work. A

third-order upwind biased MUSCL Steger-Warming scheme with a minmod

flux limiter is used for the extrapolation of the Euler fluxes in the streamwise,

wall-normal and spanwise directions. The eigenvalue limiters were chosen to

minimize additional dissipation within the boundary layer.

The gas flows considered in this work are restricted to a frozen, non-

ionized five species air (N2, O2, NO,N,O) mixture. A multi-temperature model

is used whereby the energy in the translational, rotational and vibrational

modes are characterized by separate temperatures Ttr, Trot and Tvib, respec-

27



tively. This requires a solution of five species equations, three momentum

equations and three energy equations. The primary flowfields generated in this

work are two-dimensional compressible boundary layer flows over a discrete,

three-dimensional surface roughness geometry. Several gas-surface interaction

models are available within DPLR, but this work is limited to the study of

non-reacting slip- and no-slip surface models. The no-slip condition assumes

that the flow velocities at the stationary wall are equal to zero, and the flow

temperatures (Ttr, Trot, Tvib) at the wall are specified by the temperature of

the surface. The slip model employed in this work is the Gökçen slip model

[29], which is similar to a Maxwellian slip condition at the wall, but includes

a modified accommodation coefficient to improve results for high Knudsen

number flows. Maxwell’s slip model specifies a slip velocity, us, at the wall

that is proportional to the wall-normal gradient (∂/∂y) of the flow velocity, u,

tangential to the wall,

us = A

(
2− σu
σu

)
λu

∂u

∂y

∣∣∣∣
y=0

. (2.34)

In this model, A is a constant and σu is the momentum accommodation coef-

ficient, which varies according to the surface material. The mean free path λu

characterizes momentum transport and is defined as [29]

λu =
2µ

ρc̄
(2.35)

A slip temperature (or temperature jump) may also be specified according to

Ts =

(
2− σT
σT

)
λT

∂T

∂y

∣∣∣∣
y=0

(2.36)
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where σT is the thermal accommodation coefficient and λT is the thermal mean

free path. The mean free path λT characterizes energy transport and is defined

as [29]

λT =
2Ktr

ρc̄cv
(2.37)

In place of the accommodation coefficients in (2.34) and (2.36), Gökçen’s slip

model uses the modified accommodation coefficient

σu,T = 2λu,T
∂(u, T )

∂y

∣∣∣∣
y=0

. (2.38)

2.3.2 Transport Models

The transport of mass, momentum and energy within a five species

air gas mixture is characterized by the species mass and thermal diffusions,

viscosity and bulk viscosity, and thermal conductivity with contributions from

the translational and internal modes. In this work, the mass diffusion, viscosity

and translational and internal thermal conductivities are considered. The

coefficients of thermal diffusion and bulk viscosity are not modeled in DPLR,

and they are likely negligible for the flows examined here, although future work

in this area should investigate these effects.

As discussed in the first part of this chapter, rigorous kinetic theory

derivations of the transport coefficients may be obtained from the Chapman-

Enskog procedure. The solution method has been extended to gas mixtures,

species with internal energy, as well as ionized gas mixtures [12, 38, 51, 89]. The

calculation of the transport coefficients requires two steps. First, the collision
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integrals Ωl
st(r) must be obtained for each species pair, s, t. The Chapman-

Enskog formulas may then be evaluated for the [S× S] system. In the past, the

evaluation of the full [S× S] system was generally quite expensive, and so mix-

ing rules were often used in CFD solvers as an approximation to the Chapman-

Enskog solution. However, iterative methods have been demonstrated as an

efficient approach for solution of the full Chapman-Enskog matrix [20]. Com-

parisons among the available mixing rules and the Chapman-Enskog results

which characterize their accuracy and efficiency are available in the literature

[51, 52, 60].

The species diffusion coefficients are computed in DPLR using the self-

consistent effective binary diffusion (SCEBD) model [66]. The SCEBD model

is a simplification of the Stefan-Maxwell equations, which use the full set of

multi-component diffusion coefficients to compute the species mass fluxes for a

multicomponent gas mixture. Instead of computing the full multi-component

species diffusion coefficient matrix that is obtained from Chapman-Enskog

Theory, this model uses a diagonal matrix of effective diffusion coefficients.

The resulting mass flux represents the diffusion of species s through a com-

posite pseudo-species comprising the remaining constituents in the mixture.

This model will also be used to approximate the diffusion coefficients obtained

through the DSMC collision cross section models; a detailed formulation of

the SCEBD model is presented in Chapter 4.

The mixture viscosity and translational thermal conductivity coeffi-

cients in DPLR are computed from the model by Gupta et al. with Yos
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mixing rules [34]. Again, this model is an approximation to the full set of

coefficients computed from Chapman-Enskog Theory. The mixture viscosity

in DPLR is computed according to Eq. 41 of [34]

[µ]1 =
S∑

i=1

(
χi(Mi/NA)∑S
j=1 χj∆ij(2)

)
, (2.39)

and the mixture translational thermal conductivity is computed according to

Eq. 42(a) of [34]

[Ktr]1 =
15

4

S∑

i=1

(
χi∑S

j=1 αijχj∆ij(2)

)
. (2.40)

In these expressions, αij is defined as

αij = 1 +
(1−Mi/Mj)(0.45− 2.54Mi/Mj)

(1 + (Mi/Mj))2
, (2.41)

where M is the molar mass and NA is Avogadro’s number, and ∆ij is given

by

∆ij(2) =
16

5

[
2MiMj

πNAkbT (Mi +Mj)

]1/2
πΩ̄2

ij(2), (2.42)

where Ω̄l
ij(r) are the reduced collision integrals defined as the ‘standard’ colli-

sion integral (introduced in (2.20)) normalized by the collision integral for the

rigid hard sphere cross section.

The internal thermal conductivities of the molecular components within

the air mixture are computed in DPLR using Eucken’s approximation. The

same assumption is used for the calculation of the DSMC internal thermal

conductivities from the collision cross section models. Briefly, the Eucken

approximation may be obtained from Generalized Chapman Enskog Theory by
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assuming an elastic cross section for the transport of internal energy [57]. This

results in a transport of the internal energy throughout the system according

to the diffusion of that species. The details concerning the calculation of the

internal thermal conductivities from Eucken’s approximation is presented in

Chapter 4.

2.3.3 Internal Energy Exchange and Relaxation

As mentioned previously, the DPLR simulations presented in this work

allow for thermal non-equilibrium, with a separate energy equation for trans-

lational, rotational and vibrational energy. The time rate of change of energy

per unit volume has contributions from the convection and conduction of en-

ergy through the system, as well as vibrational-translational and rotational-

translational energy exchange (recall that the flow is frozen and chemical re-

actions are neglected). The rate of vibrational relaxation is specified by the

vibrational-translational relaxation time, τv, which is determined from the cor-

relation by Millikan and White [56],

pτv,MW = exp
[
A(T

−1/3
tr −B)− 18.42

]
[atm− s] (2.43)

A high temperature correction by Park is also employed within DPLR, which

is necessary to limit the excitation rates at high temperatures due to the cutoff

of elastic cross sections. This correction is given as

τc =
(
nσv
√

8kbTtr/πm
)−1

, (2.44)
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and the total vibrational relaxation time is then

τv = τv,MW + τc. (2.45)

The rotational-translational relaxation of the gas is modeled using the expres-

sion for a rotational relaxation time from Parker [63],

τr =
Z∞r τ[

1 +
π3/2

2

(
T ∗

Ttr

)1/2

+

(
π2

4
+ π

)(
T ∗

Ttr

)] , (2.46)

where τ is the average time between collisions and the values T ∗ and Z∞r are

tabulated constants.

2.4 The Direct Simulation Monte Carlo Method

The direct simulation Monte Carlo (DSMC) method is used in this work

to model regions of non-equilibrium flow. In this section, a brief overview of

the DSMC method is provided, and the details of the DAC flow solver as well

as the physical models employed within DAC are discussed.

The DSMC method is a particle-based, probabilistic approach for the

solution of the Boltzmann equation [2]. The gas flow is modeled with a large

number of simulated particles of which the mass, velocity, position and in-

ternal energy state are tracked throughout the simulation. Each simulated

particle represents a prescribed number of real molecules in the gas, thus the

DSMC solution is subject to statistical noise that is larger than the thermal

fluctuations within a real gas. The particles move throughout the computa-

tional domain and undergo collisions with other particles or with surfaces, and
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the macroscopic flow information is computed from the particle information

sampled within each computational cell.

There are two primary steps involved in a DSMC simulation. Particles

are first ‘created’ (that is to say, they are generated either at computational

boundaries or within a computational cell) and moved throughout the compu-

tational domain according to their prescribed velocity for a single time step.

Following the dilute gas assumption and neglecting any external body forces

or collisions with surfaces, this motion is a straight trajectory. In the sec-

ond step, these particles are then sorted into computational cells, and pairs of

particles within each cell are randomly selected to undergo collisions. In the

case of an elastic collision, the post-collision scattering direction along with

the conservation of momentum and energy determine the post-collision veloc-

ities of the colliding pair. In the case of an inelastic collision, the total energy

of the colliding particles is redistributed according to the Larsen-Borgnakke

model (discussed in Section 2.4.3). These two steps are repeated until the flow

reaches a steady state.

2.4.1 DAC solver for rarefied flows

The hybrid DSMC solutions presented in this work are generated using

a modified version of the DSMC Analysis Code (DAC) rarefied flow solver [48].

DAC was developed at NASA JSC as a simulation tool for general rarefied gas

flows. The solver is comprises a main driver program for the actual DSMC

calculation, and includes several pre- and post-processing modules and libraries
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as well as a surface geometry preprocessor. DAC includes both serial and

parallel versions of the pre-processor and driver programs, and can be used to

solve axi-symmetric and two- and three-dimensional flow problems.

Prior to the DSMC simulation in DAC, a ‘water-tight’ geometry must

be constructed using a grid generation program. The water-tight geometry is

then imported into DAC, which can set up a variety of external or internal

flow problems, e.g. flow around a sphere or expanding nozzle flows. In this

work, the flow problem within DAC is set up as an internal flow, in which the

water-tight geometry is a rectangular box. The details of the flow boundary

conditions and roughness geometry are discussed later in Chapters 3 and 5,

while an overview of the geometry setup and DAC-specific mechanics are out-

lined here. Five sides (front, back, left, right and top) are designated as inflow

boundaries, and the sixth side (bottom) is specified as a solid wall, compris-

ing the flat surface and the discrete surface roughness. The six faces of the

water-tight geometry are created as triangulated surfaces, and each surface is

constructed such that all surface normals are pointing into the box, where the

DSMC flowfield is created.

Prior to creating the computational volume cells within this water-tight

geometry, the inflow pointwise boundary conditions must first be specified at

each node on the triangulated surface through the STP geometry preprocessor

in DAC. The macroscopic flow quantities specified at these nodes are later used

for DSMC particle generation, which occurs on the ‘fluxing triangles’ referred

to later in Chapter 3. The surface triangles in DAC are defined according to
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a continuous connectivity list and node positions based on the global (x, y, z)

coordinate system of the computational domain, but a local coordinate sys-

tem, defined by the two sides of the triangle and the surface normal, is used

for particle generation on each surface triangle. This allows for very com-

plex geometries to be handled easily and consistently in DAC. However, this

requires that all of the macroscopic flow quantities in vector form (velocity,

diffusion fluxes and heat fluxes) and tensor form (shear stresses) necessary for

non-equilibrium DSMC particle generation (Chapter 3) must first be projected

onto the local coordinate system of each fluxing surface triangle. This trans-

formation is accomplished later on within DAC using the three-dimensional

rotation matrix. This is not necessary for quantities that are rotationally

invariant (e.g., number density, temperature).

After the solid surface and inflow boundary conditions have been spec-

ified in STP, the surface discretization file is loaded into the flow preproces-

sor DPREDAC (parallel version). The flow preprocessor builds a structured

computational domain (comprising coarse Level-I and finer resolution Level-II

computational volume cells [47]) that contains the entire water-tight geometry.

The triangulated surfaces of the water-tight geometry obviously cut through a

portion of the computational cells. To handle these, the preprocessor computes

the intersection of the surface triangles and computational cells and determines

the volume of the cut cell that lies inside the flowfield. This portion of the cut

cell is tagged as flowfield, while the other portion is tagged as non-flowfield

and is not used in the DAC simulation. Cells lying entirely inside or outside
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Figure 2.1: DAC computational domain with Level-I and Level-II cells and
triangulated surface geometry (shown in gray with blue unstructured surface
mesh). The Level-II cells enhance the resolution of the computational grid
near the geometry surface.

of the flowfield region are also tagged appropriately. The preprocessor also

discerns near-body cells (cells near the triangulated surface), which after some

modification to DPREDAC, is exploited later in Chapter 5 to improve the

predicted total surface heating within the DSMC solution. An example of the

final computational domain, including the Level-I and Level-II flowfield cells,

is shown in Figure 2.1

Once the computational domain is completely specified, the flowfield

files are loaded into the main DAC solver. The computational domain is ini-

tialized as a vacuum, and DSMC particles flux into the computational domain

from the surface triangles that were specified as inflow boundaries in STP. The

simulation is continued until the average number of particles fluxing into the

domain balances that of particles fluxing out of the domain, and the surface
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heating has reached a steady state. The details of the DAC simulations and

convergence requirements for the cases examined in this work are described in

Chapter 5.

2.4.2 Collision cross section models

The transport properties within the DSMC method are a result of the

transfer of mass, momentum and energy through particle movement and col-

lision dynamics. The DSMC collision cross section models examined in this

work include the variable hard sphere (VHS) and variable soft sphere (VSS)

models. Within this framework, the DSMC simulation particles are modeled

as hard spheres of diameter d which is a function of g, the relative speed of

the collision pair, such that d ∼ (1/g)ω−1/2. The VSS model also includes

a scattering angle specified by the coefficient α, such that values of α > 1.0

result in a scattering angle smaller than the corresponding value of the VHS

model (in which α = 1.0). The reduced scattering angle effectively establishes

a forward-scattering tendency of the colliding particles. This feature in VSS

provides a model in which both the diffusion and viscosity cross sections are

consistent with those from any intermolecular potential [43]. The VHS and

VSS models are discussed in detail later in Chapter 4, where a thorough anal-

ysis is presented regarding the calibration of the collision model parameters.

This calibration is conducted in order to achieve a consistent set of transport

properties within the hybrid DSMC/CFD framework.

For the chemically frozen five-species air hybrid simulations presented
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in this work, the variable hard sphere (VHS) model is considered, since as will

be found later, the diffusion fluxes in the flows considered here are negligible.

Use of the VHS model in the same flow conditions for a reacting gas mixture

would be questionable, however, due to the strong influence of the diffusion

heat flux in reacting flows.

2.4.3 Internal Energy Exchange and Relaxation

The Larsen-Borgnakke model [4] is used in DSMC for energy redis-

tribution in inelastic collisions, for both translational/rotational and transla-

tional/vibrational exchanges. The internal energy exchange is determined on

a collisional basis according to the probability defined as 1/Z, where Z is the

collision number of the internal mode.

The vibrational relaxation times in both DPLR and DAC are deter-

mined using the Landau-Teller model for simple harmonic oscillators, along

with empirical correlations for the vibrational relaxation time from Millikan

and White [56] with Park’s high-temperature correction [61]. The rotational

collision number used in the present work is assumed to be constant, with

Zr=5. To ensure consistency in the vibrational relaxation times achieved in

both solvers, the DSMC vibrational collision number is determined according

to the expression[27]:

ZDSMC
v = ZNS

v

(
1

1 + 0.5ξ2v exp(θv/T )
(4−2ω)

)
(2.47)
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where θv is the charactertistic vibrational temperature and ξv is the temperature-

dependent number of vibrational degrees of freedom for a harmonic oscillator

given by:

ξv =

(
2θv/T

exp(θv/T )− 1

)
(2.48)

The Navier-Stokes collision number, ZNS
v is computed as:

ZNS
v =

(
τMW
v + τParkv

)
ν (2.49)

and τMW
v is determined from the empirical correlation:

τMW
v =

1

p
exp(A(T−1/3 −B)− 18.42) (2.50)

In (2.50), A and B are vibrational constants specified for each collision pair

[61], and p is in atmospheres. The collision frequency ν of species s in a

mixture is determined by:

νs =
∑

t

(
nt(dref )

2
t

(
8πkbTref,t

m∗t

)1/2(
T

Tref,t

)1−ωt
)

(2.51)

All quantities in (2.51) are determined according to the DSMC cell-based

macroscopic quantities as outlined in Deschenes et al. [19]. This vibrational

relaxation approach has been demonstrated to provide good agreement be-

tween the vibrational relaxation times produced by DSMC and continuum

flow solvers in a heat bath of five species air [40].

2.5 Hybrid Approaches for Continuum/Rarefied Flows

Although CFD approaches provide an efficient and accurate solution in

near-continuum flow regimes, the underlying continuum assumption inherent
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in the solution of the Navier-Stokes equations breaks down in strong non-

equilibrium flows. In this regime, high-fidelity kinetics-based methods, such as

direct simulation Monte Carlo (DSMC)[2], must be used to accurately capture

non-equilibrium effects that drive important thermo-chemical processes. While

the DSMC solution is valid from free-molecular to continuum regimes, the

time step and cell size requirements become computationally prohibitive in

the continuum limit. It is precisely in this regime, however, that a CFD

solver may be employed. Thus, a combined DSMC/CFD hybrid approach is

often adopted as a way to achieve high-fidelity solutions while maintaining

computational efficiency.

Hybrid methods have been developed and successfully applied for a

variety of flow scenarios[18, 36, 65, 69, 71–74]. The hybrid flowfield solution is

generally obtained by first determining the location of the hybrid interface,

which forms the boundary between the CFD and DSMC solvers, at or near

the breakdown of the Navier-Stokes solution. Since the breakdown location

can not be determined a priori, an initial CFD solution is generally used to

determine the interface location based on a breakdown criterion. This crite-

rion may be either parameter-based, or based on a direct comparison of flow

quantities or distributions[6, 9, 13, 22, 73]. The interface is then used to pass

flowfield information between the two solvers. Macroscopic flowfield quanti-

ties from the CFD solution are used to prescribe the appropriate distribution

function from which DSMC particle thermal velocities and internal energies are

sampled. These particles may be created and fluxed into the non-equilibrium
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computational domain using either volume reservoir or surface reservoir ap-

proaches. The DSMC solver is then used to generate the local non-equilibrium

flow solution.

The generation of hybrid solutions that involve the coupling of DSMC

and CFD solutions requires a careful and consistent formulation of a proper

boundary condition for the transfer of flux information across the hybrid in-

terface. In equilibrium conditions (i.e., Di = τij = qi = 0, or Euler solution),

DSMC particle information may be sampled from an equilibrium Maxwell-

Boltzmann distribution. Under non-equilibrium conditions, however, (i.e.,

Di, τij, qi 6= 0, or Navier-Stokes solution) DSMC particle information must

be sampled from the Chapman-Enskog distribution, to ensure the preserva-

tion of flux information across the hybrid interface. Garcia and Alder pre-

sented an acceptance-rejection algorithm for generating particle velocities from

a Chapman-Enskog distribution within a volume reservoir [23]. This formu-

lation, however, is limited to simple (single-species, monatomic) gas flows,

and includes only the shear stress tensor and translational heat flux vector

components in the expression for the perturbation. In efforts to extend these

hybrid methods to more complex flows often encountered in hypersonic ap-

plications, this work presents an extension of the Chapman-Enskog boundary

condition to include gas mixtures and gases with internal energy. This new

boundary condition is formulated in the framework of Generalized Chapman-

Enskog Theory[7, 44, 57], and includes contributions from Navier-Stokes fluxes

arising from species diffusion, viscosity, and translational and internal thermal
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conductivity.

An additional consideration that is necessary for a quality hybrid solu-

tion is the consistent treatment of the thermo-chemical models employed by

each of the solvers. For simulations of hypersonic flows, this includes models

for thermal relaxation and general thermodynamics, chemical reactions, and

mass, momentum and energy transport. Consistency in these models promotes

a smooth transition from one computational region to the other by ensuring

that the same flow ‘problem’ is being solved in each region. It also allows for a

consistent comparison of the CFD and DSMC solutions by ensuring that any

differences between the solutions are due to fundamental non-equilibrium pro-

cesses, rather than differences in the physical models. Previous studies have

presented consistent treatments for the thermal relaxation processes[19, 27]

and chemical reactions in five-species air systems [41] for use in hybrid ap-

plications, or direct DSMC/CFD comparisons. This manuscript examines the

transport properties generated by the DSMC and CFD models for a five-species

air gas mixture. A general approach for the calibration of the DSMC collision

model parameters is presented, in which both the variable hard sphere (VHS)

and variable soft sphere (VSS) collision cross section models are examined.

The method for prescribing the collision partner parameters (either collision-

averaged or collision-specifc) is also examined in the fitting of DSMC transport

coefficients. The resulting transport coefficients from the calibrated DSMC pa-

rameters are compared with the transport coefficient models employed in the

CFD solver.
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To generate the hybrid solution, the DPLR code is first used to compute

the flowfield over the geometry of interest. The hybrid interface is formed in the

flow region surrounding the surface roughness, and the macroscopic parameters

obtained from the Navier-Stokes solution are used to generate the appropriate

velocity distribution function for hybrid particle generation at the interface.

The DAC solver is then used to compute the non-equilibrium solution in the

region surrounding the roughness. The details involved with obtaining the

hybrid solution are presented in the following Chapters.

2.6 Summary

The material presented in this chapter lays the groundwork for the

novel hybrid methods (presented in Chapters 3 and 4) that have been devel-

oped for these studies, as well as the analysis of the hybrid and CFD flow-

field solutions presented in Chapter 5. The construction of a consistent hy-

brid DSMC/CFD framework relies on the fundamental principles established

through (Generalized) Chapman-Enskog Theory. This theory establishes the

relationship between the DSMC and CFD methods through the Boltzmann

equation. The CFD method, which involves solution of the Navier-Stokes

equations, is limited to flows which are near equilibrium, as the Navier-Stokes

equations are formulated assuming (a priori) that the flow is described by the

Chapman-Enskog distribution. The DSMC method is a particle-based, prob-

abilistic approach for the solution of the Boltzmann equation, and makes no

underlying assumption of the probability distribution function describing the
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flow. The DSMC method can therefore be used to accurately model strong

non-equilibrium flows.

The collision-integrals and the expression for the perturbation are two

important principles that are established from Chapman-Enskog theory. The

perturbation formulated from Generalized Chapman-Enskog Theory (discussed

in Chapter 3), provides a link between the non-equilibrium macroscopic fluxes

determined from CFD, and the non-equilibrium distribution function describ-

ing particle thermal velocities and internal energies in DSMC. This pertur-

bation thus provides a transition from the continuum CFD solution to the

non-equilibrium DSMC solution in the hybrid solution. Although the discus-

sion of the perturbation in this chapter was limited to simple gases, the general

concepts presented here are easily extended to the five-species air system con-

sidered in this work through Generalized Chapman Enskog Theory.

The collision-integrals provide a link between the microscopic colli-

sion dynamics and the definition of the transport coefficients, and thus the

macroscopic transport fluxes. The importance of the collision-integrals within

the hybrid framework is exemplified in Chapter 4, where the consistency in

transport properties modeled in DSMC and CFD is discussed in detail. The

thermo-chemical models used in the DAC (DSMC) and DPLR (CFD) solvers

were presented in this chapter as well, and consistency in vibrational relax-

ation rates used in both solvers is achieved following the work of Gimelshein

et al. [27] and Deschenes et al. [19], as discussed in this chapter.
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Chapter 3

Generation of the Hybrid Solution

3.1 Overview

In this chapter, an approach for the generation of particles at a hy-

brid Navier-Stokes/DSMC interface is presented for simple gases and gas mix-

tures with internal degrees of freedom. DSMC particles generated at a hy-

brid boundary are assigned thermal velocities using a non-equilibrium surface

reservoir approach, in which the fluxes of mass, momentum and energy de-

termined from the Navier-Stokes solution are used to prescribe the appropri-

ate velocity distribution function used in the DSMC particle generation. The

non-equilibrium surface reservoir approach is first outlined for a simple (single-

species, monatomic) gas, and is then extended to gas mixtures with internal

degrees of freedom, in which additional diffusion and internal heat flux terms

are included in the Generalized Chapman-Enskog formulation of the pertur-

bation. The significance of the diffusion, shear stress and heat flux parameters

in the perturbation are examined at a hybrid interface within non-equilibrium

boundary layer flow, as well as within the breakdown region near a normal

shock, in a five-species air gas mixture. The validity of the Chapman-Enskog

perturbation at each of these hybrid interfaces is assessed by comparison with

the Generalized Chapman-Enskog perturbations. Finally, the concepts intro-
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duced here are applied to a three-dimensional flowfield of hypersonic boundary

layer flow over surface roughness.

3.2 Hybrid Particle Generation

The quality of a hybrid solution involving direct simulation Monte Carlo

(DSMC) and Navier-Stokes solvers relies on the accurate representation of the

flowfield across the hybrid interface. The transfer of information from the

Navier-Stokes solution to the DSMC solver is made almost exclusively through

the velocity distribution function, which is used to prescribe the thermal veloc-

ities of particles generated at the hybrid interface. When the flowfield at the

location of the hybrid interface is in equilibrium, the particle thermal velocities

may be prescribed from a Maxwellian distribution. In contrast, DSMC parti-

cles that are generated at an interface within a non-equilibrium region follow a

perturbed velocity distribution which, for small departures from equilibrium,

may be described by the Chapman-Enskog distribution function.

3.2.1 Volume and Surface Reservoir Approaches

Particles generated at the hybrid interface may be introduced into the

computational domain using either a volume reservoir or surface reservoir ap-

proach [24, 71]. The volume reservoir approach populates reservoir or ‘ghost’

cells with randomly distributed simulation particles whose thermal velocities

are prescribed according to the appropriate velocity distribution function.

These particles are allowed to move within the reservoir cells and into the
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computational domain during the initial particle creation. Particles that en-

ter the computational domain are used in the simulation, while any particles

remaining in the reservoir cells are deleted.

The surface reservoir is an alternative approach to hybrid particle gener-

ation. A surface reservoir may be thought of as a surface which emits randomly

distributed particles at a rate that is consistent with the macroscopic proper-

ties of the fluid. The surface reservoir approach may be more computationally

efficient than the volume reservoir approach, since all particles generated at

the hybrid domain boundary are used in the simulation. The velocity distribu-

tion function describing the thermal velocities of these particles is formulated

by computing the distribution of particles in an infinite reservoir which would

cross the surface reservoir boundary and enter into the computational domain

during a single timestep.

The current work seeks to extend the surface reservoir approach to

particles generated in a non-equilibrium flowfield region. The non-equilibrium

surface reservoir distribution function is derived first for a simple gas assumed

to follow a Chapman-Enskog distribution (Section 3.3.1), and a general ap-

proach for particle sampling from this distribution is outlined at the end of

this section and Appendix A. This surface reservoir approach is then extended

to a gas mixture with internal degrees of freedom by way of the Generalized

Chapman-Enskog framework (Section 3.3.2 and Appendix B), and a general

approach for particle sampling from these distributions is provided at the end

of Section 3.3.2. In Section 3.4 a simple analysis is presented in which the sig-
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nificance of the diffusion flux, shear stress and heat flux contributions to the

Generalized Chapman-Enskog perturbation are assessed for a hybrid interface

within a non-equilibrium boundary layer flowfield (Section 3.4.1), as well as

within the breakdown region near a normal shock (Section 3.4.2).

3.3 Particle generation using a non-equilibrium surface
reservoir approach

3.3.1 Surface reservoir approach for a simple gas

The surface reservoir approach employed in this work may be thought

of as a fluxing triangulated surface that emits randomly distributed particles

into the DSMC computational domain (Figure 3.1). In equilibrium conditions

(i.e., τij = qi = 0), the thermal velocity components tangential to the fluxing

surface may be generated from a Maxwellian distribution, however the thermal

velocity component normal to the fluxing surface is prescribed from a one-sided

Maxwellian distribution [24, 50] as shown in Figure 3.2. Under non-equilibrium

conditions (i.e., τij, qi 6= 0), the Chapman-Enskog distribution should be em-

ployed for cases in which the flow exhibits a small departure from equilibrium

[23, 36, 71]. Garcia and Alder presented an acceptance-rejection algorithm for

generating particle velocities from a Chapman-Enskog distribution within a

volume reservoir [23]. To generate particles under non-equilibrium conditions

using a surface reservoir approach, we must first derive the appropriate velocity

distribution for a non-equilibrium surface reservoir.

Consider a simple gas inside a reservoir extending from (−∞ < x ≤
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specified via fluxing surface triangle geometries. The connectivity of the surface triangles
are used to determine the normal (rn) and tangential (t1, t2) unit vectors which describe the
orientation of the fluxing triangle with respect to the local flowfield. The surface normal
information as well as the triangle’s connectivity is stored in memory in DAC, and the
tangential unit vectors are calculated using simple vector algebra. The surface directional
unit vectors form a right-handed coordinate system in the order (rn, t1, t2). If we consider
a surface triangle in the y, z plane with rn aligned in the +x direction, the mapping of unit
vectors from the cartesian coordinate system to the surface triangle coordinate system is
(x, y, z) → (rn,−t2, t1) (Figure 1).

be determined from a Poisson distribution with mean N , Rp. The non-equilibrium effects
presented by Tysanner & Garcia were subtle, in that the average streamwise fluid velocity
produced by the method of (14) for a gas at rest was in fact O(10−3) at the fluxing surface.
It should also be noted that the average streamwise fluid velocity had relaxed toward the
correct state within 10λ, where λ is the molecular mean-free-path. It is expected (although
not confirmed) that this subtlety is negligible in the context of this problem, although fu-
ture implementations could certainly include this straight-forward modification.

Each particle is assigned a uniformly distributed random position x on the triangle
surface. The tangential thermal velocity components of particles fluxing across the surface
are generated from a Maxwellian distribution using the Box-Muller method:

vt1 = cos(2πRu)
�
−logR�

uvT + vo = RnvT + vo (15)

vt2 = sin(2πRu)
�
−logR�

uvT + wo = R�
nvT + wo (16)

In (15) and (16), Rn and R�
n are Gaussian distributed random variables with zero mean and

a unit variance. The normal thermal velocity component follows a one-sided Maxwellian
distribution which is biased toward particles crossing the planar interface in the +x direc-
tion:

fn =
m

kT
u� exp [−mu�2/2kT ] (17)

For the case in which uo = 0, the normal component is generated according to:

u� =
�
−logRu (18)

In all other cases (uo �= 0), the normal component is generated using an acceptance-
rejection scheme. The procedure is to generate a thermal velocity (normalized by the most
probable thermal speed) that is uniformly distributed with zero mean that extends ±3σ.
This thermal velocity is then used to evaluate the probability ratio:

P

Pmax
=

2(βu� + a)

a +
√

a2 + 2
exp

�
1

2
+

a

2
(a −

�
a2 + 2) − β2u2

o

�
(19)

This value is compared to a uniformly distributed random value, and u� is accepted if
P/Pmax > Ru. The normal velocity component is thus:

vrn = u�vT + uo (20)

1.3 Chapman-Enskog Inflow Distribution

The Chapman-Enskog velocity distribution is a perturbation of the Maxwellian distribution
and may be generated efficiently using an acceptance-rejection routine from the velocities

5

Ω1
st(1) =

�
kT

2πmoMsMt

�
1

2
σT,refg2ν

ref

�
Γ(3 − ν) (40)

Ω2
st(2) =

�
kT

2πmoMsMt

�
1

3
σT,refg2ν

ref

�
Γ(4 − ν) (41)

All terms in (??) should now be fully defined in terms of the gas properties as well as
the parameters defining the VHS model, so we may solve for the bs’s.

ft1,t2 =

�
m

2πkT
exp[−mu�2/2kT ] (42)
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Figure 1: Orientation of fluxing triangle surface normals with respect to (x, y, z)

Once the orientation of the fluxing triangles is determined, the particles are generated at
the boundaries and introduced into the computational domain. For simplicity of discussion,
it will be assumed that the particle generation outlined here corresponds to the geometric
orientation of Figure 1. The mean number of particles crossing a surface area during a
time interval τ is:

N = nστ
vT

2
√
π

�
exp (−a2) + a

√
π [1 + erf(a)]

�
(13)

where we have vT =
�

2kT/m which is the most probable thermal speed, m = mass of
the particle, n = number density, σ = surface area, a = uo/vT is the scaled velocity. The
integer number of particles NR is determined by random rounding, where:

NR = floor(N + Ru) (14)

where Ru is a uniformly distributed random value on the interval (0, 1]. To avoid introduc-
ing spurious non-equilibrium effects into the domain, it is proposed by Tysanner & Garcia

4

Figure 3.1: Schematic of surface
reservoir comprised of fluxing trian-
gles. Particles are randomly dis-
tributed over shaded surface and then
released into computational domain (in
+x-direction).

Figure 3.2: Equilibrium surface
reservoir velocity distribution func-
tions corresponding to normal (one-
sided Maxwellian distribution; top)
and tangential (Maxwellian distri-
bution; middle, bottom) velocity
components.

0) which follows a Chapman-Enskog distribution. The velocity distribution

describing the particle thermal velocities within the reservoir may be expressed

as [12, 21, 38]:

f (1)(C) = f (0)(C)Γ(C), (3.1)

where f (0)(C) is the equilibrium Maxwellian distribution defined by:

f (0)(C) =

(
β

π1/2

)3

exp
[
−(β2C2

x + β2C2
y + β2C2

z )
]
. (3.2)

The quantity Γ(C) = 1 +φCE(C) is the perturbation function describing the
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small departure from the equilibrium state which may be expressed as:

Γ(C) = 1 + (qxCx + qyCy + qzCz)

(
2

5
C 2 − 1

)

−2 (τxyCxCy + τxzCxCz + τyzCyCz)

−
(
τxxC

2
x + τyyC

2
y + τzzC

2
z

)
,

(3.3)

where, for compactness, the product of the thermal velocity components and

the inverse most probable thermal speed is expressed as Ci = Ciβ. The

variable Ci is the scaled thermal velocity component in the direction i where

i, j ∈ (x, y, z), β =
√
m/2kbTtr is the inverse most probable thermal speed, m

is the molecular mass, kb is Boltzmann’s constant and Ttr is the translational

temperature of the gas. In equation (3.3), C 2 = C 2
x +C 2

y +C 2
z is the square of

the magnitude of the normalized particle thermal velocity, and τij and qi are

the dimensionless shear stress and heat flux components defined as:

τij =
µ

p

(
∂jvi + ∂ivj −

2

3
∂kvkδij

)
=
τNSij

p
, (3.4)

qi = −2βKtr

p
∂iTtr =

2βqNSi
p

, (3.5)

where µ and Ktr are the coefficients of viscosity and translational thermal

conductivity, respectively, and p is pressure.

We would like to determine the distribution function f (1)
SR

(C) of the

molecules within this reservoir which cross the surface reservoir (SR) boundary

at x = 0 and enter into the computational domain per unit time and area.

This is equivalent to determining the ratio of the differential flux of molecules

which cross the surface reservoir boundary to the total flux of molecules that
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would enter the computational domain. This ratio may be expressed as:

f (1)
SR

(C)dC =
n(Cx + u)f (1)(C)dCzdCydCx

n

∫ ∞

−u

∫ ∞

−∞

∫ ∞

−∞
(Cx + u)f (1)(C)dCzdCydCx

. (3.6)

Here, n is the number density, dCi is the differential thermal velocity compo-

nent, and we have allowed for a non-zero bulk velocity u in the +x direction.

Using (3.1) and (3.2), we may write (3.6) as:

f (1)
SR

(C)dC =

(Cx + u)

(
β

π1/2

)3

exp
[
−(C 2

x + C 2
y + C 2

z )
]

Γ(C)dC

∫ ∞

−u

∫ ∞

−∞

∫ ∞

−∞
(Cx + u)

(
β

π1/2

)3

exp
[
−(C 2

x + C 2
y + C 2

z )
]

Γ(C)dC

.

(3.7)

We seek to express (3.7) as the product of the distribution functions describing

the normal and tangential thermal velocities of particles crossing the surface

reservoir boundary into the computational domain, and the corresponding

perturbation function. After multiplying and dividing through by (2
√
πβ)

and evaluating the triple integral over velocity space, the expression in (3.7)

becomes:

f (1)
SR

(C) = f
SR

(Cx)fSR
(Cy)fSR

(Cz)Γ(C). (3.8)

The tangential surface reservoir distributions, f
SR

(Cy), fSR
(Cz) of expression

(3.8) follow regular Maxwellian distributions:

f
SR

(Cy, Cz) =

(
β

π1/2

)
exp

(
−β2C2

(y,z)

)
. (3.9)
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The normal surface reservoir distribution f
SR

(Cx) of expression (3.8) contains

the form of the equilibrium one-sided Maxwellian distribution, but is modified

by the integration over the perturbation included in (3.6), and is given as:

f
SR

(Cx) =
2β2(Cx + u) exp(−β2C2

x)/ (u
√
πβ){

1 + erf(βu) +
1

u
√
πβ

exp(−β2u2)− qx
5
√
π

exp(−β2u2)

(3.10)

−
[

1

u
√
πβ

exp(−β2u2) +
1

2
[1 + erf(βu)]

]
τxx

−1

2

[
1

u
√
πβ

exp(−β2u2) + [1 + erf(βu)]

]
τyy

−1

2

[
1

u
√
πβ

exp(−β2u2) + [1 + erf(βu)]

]
τzz

}
.

To generate particles from this non-equilibrium surface reservoir distribution

given in (3.8), we follow an acceptance-rejection algorithm very similar to the

approach outlined in Garcia and Alder [23]:

1. Generate the equilibrium thermal velocity components (Cx,Cy,Cz) from

the distributions given by (3.9) and (3.10). (sampling details are outlined

in Appendix A)

2. Compute the amplitude parameter A = 1 + 30B , where B is the break-

down parameter determined by B = max (|τij| , |qi|).

3. If (ARu ≤ Γ(C)), accept (Cx,Cy,Cz), otherwise go to (1). (Ru is a

uniformly distributed random number over the interval [0,1))

4. If non-zero bulk velocity components exist in the tangential (y, z) direc-

tions, these are simply added to the accepted thermal velocity compo-

nents from Step (3), yielding (Cx,Cy + βv,Cz + βw).
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Γ = 1+ϕ	



1	



f (0)	



f (1)
 = f (0) Γ	



Cx,y,z	



ACCEPT  
IF AR u ≤ Γ	



RESAMPLE  
IF AR u > Γ	



A=1+30B 

Figure 3.3: Schematic of sampling procedure for a non-equilibrium surface
reservoir distribution. Thermal velocities sampled from the equilibrium dis-
tribution are rejected more often in the region where Γ < 1, and are accepted
more often in the region where Γ > 1, resulting in the perturbed distribution,
f (1).

Since the non-equilibrium nature of the flowfield modeled using this sur-

face reservoir approach is assumed to be adequately described by the Chapman-

Enskog approximation, the distributions should only exhibit a small departure

from equilibrium. Thus, to sample this distribution, we use the values of

(Cx,Cy,Cz) generated from the surface reservoir distributions f
SR

(Cx, Cy, Cz)

(details in Appendix A) as an ‘educated guess’ to determine the correct non-

equilibrium distribution. The thermal velocities determined from Step 1 are

finally accepted for use in the simulation after meeting the condition in Step

3. The acceptance criterion in Step 3 can be thought of as a ‘non-equilibrium

filter’ on the thermal velocities from Step 1, resulting in the proper non-
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equilibrium distribution function (Figure 3). It has been suggested that this

approach should be valid for values B ≤ 0.1, and this breakdown criterion is

adopted for this work [23].

The perturbation function for the surface reservoir in (3.3) describes the

non-equilibrium state of a simple gas and only accounts for heat flux contri-

butions from gradients in the translational temperature as well as shear stress

contributions from gradients in the velocity field. Thus, the macroscopic quan-

tities Q
SR

required for generating the DSMC particles at the non-equilibrium

surface reservoir interface in a simple gas are:

Q
SR

= (n p Ttr vi τ
NS
ij qNSi ). (3.11)

3.3.2 Surface reservoir approach for a gas mixture with internal
degrees of freedom

The above analysis is now extended to a gas mixture with internal

degrees of freedom, to include the additional diffusion flux term arising from

the relative motion of species s, as well as the additional heat flux due to

internal energy transport in the gas. Consider a gas mixture of S species

with internal degrees of freedom inside a reservoir extending from (−∞ <

x ≤ 0) which is perturbed slightly from the equilibrium Maxwell-Boltzmann

distribution. In the Generalized Chapman-Enskog framework, the velocity

distribution describing the particle thermal velocities of species s within the

reservoir may be expressed as [57]:

f (1)
s (C,Eint) = f (0)

s (C,Eint)Γs(C,Eint), s ∈ S, (3.12)
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where f
(0)
s (C,Eint) is the equilibrium Maxwell-Boltzmann distribution defined

by:

f (0)
s (C,Eint) =

(
β

π1/2

)3
gint
Zint

exp
[
−(β2C2

x + β2C2
y + β2C2

z )− Eint
]
. (3.13)

Here, Zint = ZrotZvib is the internal partition function, which can be written as

the product of Zrot and Zvib assuming the molecules in the system follow rigid

rotator and harmonic oscillator models, and Eint = εint/kbTint is the scaled

internal energy. In this work, it is assumed [57] that the rotational relaxation

occurs rapidly such that Ttr ≈ Trot, resulting in the scaling Erot = εrot/kbTtr.

Vibrational relaxation processes occur at a much longer timescale, such that

Ttr 6= Tvib, resulting in the scaling Evib = εvib/kbTvib. Note also that the

degeneracy gvib of the harmonic oscillator is unity. In (3.12), Γs(C,Eint) =

1+φGCE,s(C,Eint) is the perturbation function describing the small departure

from the equilibrium state for species s, which may be expressed in terms of

the macroscopic fluxes as:

Γs(C,Eint) = 1 + 2(Dx,sCx,s + Dy,sCy,s + Dz,sCz,s)

+ (qx,sCx,s + qy,sCy,s + qz,sCz,s)

(
2

5
C 2
s − 1

)

+ (q̃int,x,sCx,s + q̃int,y,sCy,s + q̃int,z,sCz,s)
(
Eint,s − Eint,s

)

−2 (Cx,sCy,sτxy,s + Cx,sCz,sτxz,s + Cy,sCz,sτyz,s)

−C 2
x,sτxx,s − C 2

y,sτyy,s − C 2
z,sτzz,s.

(3.14)

The perturbation φGCE,s in (3.14) is the Generalized Chapman-Enskog (GCE)

perturbation, which is written in terms of the dimensionless species diffusion

flux, shear stress and heat flux components. As will be shown in Section 3.4,
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these dimensionless fluxes, or breakdown parameters, can be used as a measure

of the non-equilibrium nature of the flowfield, and are demonstrated to provide

an indication of the importance of the diffusion and internal heat fluxes on the

overall perturbation. The translational heat flux and shear stress components

in (3.14) are defined as before in (3.4) and (3.5) for species s:

τij,s =
µs
ps

(
∂jvi + ∂ivj −

2

3
∂kvkδij

)
=
τNSij,s

ps
, (3.15)

qi,s = −2βs
ps
Ks∂iTs =

2βqNSi,s
ps

, (3.16)

and for the gas mixture we introduce the dimensionless diffusion and internal

heat flux components defined as:

Di,s =
βsρsVi,s
ρs

=
βsD

NS
i,s

ρs
, (3.17)

q̃int,i,s = − 2βsKint,s

ρscint,sTint,s
∂iTint,s =

2βsq
NS
int,i,s

ρscint,sTint,s
, (3.18)

where DNS
i,s = ρsVi,s is the species diffusion flux, and cint represents the internal

(rotational or vibrational) specific heats. The bulk viscosity is not considered

in this work and is excluded in the derivation of the perturbation function.

The details of the formulation of φGCE,s are provided in Appendix B.

Proceeding in the same way as for the simple gas, we would like to

determine the distribution function of the molecules of species s within this

reservoir which cross the surface reservoir boundary at x = 0 and enter into the

computational domain per unit time and area. The ratio of the flux of species

s molecules which cross the hybrid surface into the computational domain to
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the total flux of molecules that would enter into the computational domain is

expressed as:

f (1)
SR,s

(C,Eint)dC =
n(Cx + us)f

(1)
s (C,Eint)dCzdCydCx

n

∫ ∞

−u

∫ ∞

−∞

∫ ∞

−∞
(Cx + us)f

(1)
s (C,Eint)dCzdCydCx

. (3.19)

After evaluation of this expression, we arrive at the distribution function for

particles of species s generated at a surface reservoir within a non-equilibrium

gas mixture:

f (1)
SR,s

(C,Eint) = f
SR,s

(Cx)fSR,s
(Cy)fSR,s

(Cz)Γs(C,Eint). (3.20)

Again, we have expressed this distribution as a product of the surface reser-

voir distributions and the corresponding perturbation. The tangential surface

reservoir distributions, f
SR,s

(Cy), fSR,s
(Cz) of expression (3.20) follow regular

Maxwellian distributions:

f
SR,s

(Cy, Cz) =

(
βs
π1/2

)
exp

(
−β2C2

(y,z)

)
, (3.21)

The normal surface reservoir distribution f
SR,s

(Cx) of expression (3.20) con-

tains the form of the equilibrium one-sided Maxwellian distribution, but is

modified by the integration over the perturbation included in (3.19), and is
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given as:

f
SR,s

(Cx) =
2β2

s (Cx + us) exp(−β2
sC

2
x)/ (us

√
πβs){

1 + erf(βsus) +
1

us
√
πβs

exp(−β2
su

2
s) +

Dx,s

usβs
[1 + erf(βsus)]

− qx,s
5
√
π

exp(−β2
su

2
s) +

q̃int,x,s(Eint,s − Eint,s)

2usβs
(1 + erf(βsus))

−
[

1

us
√
πβs

exp(−β2
su

2
s) +

1

2
[1 + erf(βsus)]

]
τxx,s

−1

2

[
1

us
√
πβs

exp(−β2
su

2
s) + [1 + erf(βsus)]

]
τyy,s

−1

2

[
1

us
√
πβs

exp(−β2
su

2
s) + [1 + erf(βsus)]

]
τzz,s

}
. (3.22)

Particles are generated from the distribution given by (3.20) follow-

ing an approach similar to that for the simple gas, however the distribution

for the gas mixture is computed specifically for each species according to the

species-specific flux information provided by the Navier-Stokes solution. The

perturbation function is now dependent on the particle internal energy as well

as the thermal velocity, thus the rotational and vibrational internal energy lev-

els must be determined for each particle before the perturbation function can

be completely specified. It is also important to note that the non-equilibrium

distribution for a gas mixture with internal energy is prescribed by a per-

turbation of the Maxwell-Boltzmann distribution (3.13). This perturbation

therefore describes not only the non-equilibrium nature of the velocity distri-

bution functions, but also the non-equilibrium nature of the internal energy

distribution functions, according to the macroscopic flux quantities comprising

the perturbation in (3.14). In order to sample this distribution, both the ther-
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mal velocities and internal energies are included in the acceptance/rejection

step, thereby ‘filtering’ these sampled quantities to reflect the non-equilibrium

nature of the flow. To generate particle thermal velocities and internal en-

ergies from the non-equilibrium distribution in (3.20), we use the following

acceptance-rejection algorithm:

1. Generate the particle rotational and vibrational energy from the Boltz-

mann distribution according to [2]:

(a) εrot = − log(Ru)kbTrot, such that Erot = εrot/kbTtr,

(b) εvib = ikbΘv ( i = d− log(Ru)Tvib/Θve), such that Evib = εvib/kbTvib.

(Θv is the characteristic vibrational temperature of species s)

2. Generate the equilibrium thermal velocity components (Cx,Cy,Cz) from

the distributions given by (3.21) and (3.22). (sampling details are out-

lined in Appendix A)

3. Compute the average rotational and vibrational energy of a particle using

the rigid rotor/harmonic oscillator approximations [2]:

(a) Erot =
kbTrot
kbTtr

,

(b) Evib =

(
kbΘv

exp(Θv/Tvib)− 1

)

kbTvib
.

4. Compute the amplitude parameter A = 1 + 30B, where B is the break-

down parameter determined by B = max (|Ds| , |τij,s| , |qi,s| , |q̃int,i,s|).
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5. If (ARu ≤ Γs(C,Eint)), accept (Cx,Cy,Cz,Erot,Evib), otherwise go to

(1).

6. If non-zero bulk velocity components exist in the tangential (y, z) direc-

tions, these are simply added to the accepted thermal velocity compo-

nents from Step (5), yielding (Cx,Cy + βv,Cz + βw).

Thus, the macroscopic Navier-Stokes quantities Q
SR

required for gen-

erating the DSMC particles at the non-equilibrium hybrid interface within a

gas mixture are:

Q
SR,s = (DNS

s ns p ρs Ttr,s Trot,s Tvib,s crot,s cvib,s vi τ
NS
ij,s q

NS
i,s qNSint,i,s). (3.23)

If species-specific flux information is not available for the shear stress or heat

fluxes, then lower-fidelity mixture quantities may be used instead.

3.4 Evaluation of the breakdown parameters in a five-
species air gas mixture

In this section, we present a simple analysis to assess the importance

of the additional diffusion and internal heat flux terms that are introduced

through the formulation of the Generalized Chapman-Enskog perturbation.

The analysis that is outlined in this section is applied to two general flow cases,

but this analysis can be easily extended to any Navier-Stokes flowfield solution

to determine (a) where the Navier-Stokes solution breaks down (spatially), and

(b) the macroscopic flux parameter(s) that lead to breakdown, according to
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the breakdown criterion of B ≤ 0.1 suggested for Chapman-Enskog particle

generation [23]. Finally, this analysis can be used to determine whether DSMC

particles may be generated from the regular Chapman-Enskog distribution (in

cases where diffusion or internal heat flux contributions are negligible), or if the

Generalized Chapman-Enskog distribution is required. To demonstrate this

analysis, we evaluate the relative sizes of each of the breakdown parameters

in two types of flows: (1) hypersonic flat-plate boundary layer flow, and (2)

the breakdown region near a shock formed by two-dimensional hypersonic flow

over a cylinder.

In each of these cases, we consider a reacting five-species air gas mix-

ture, with the freestream conditions shown in Table 3.1. In both cases, the

flat plate and cylinder surfaces are treated as non-catalytic, isothermal walls

(where Tw = 1000 K), and a no-slip wall condition is enforced. The flowfields

are computed using DPLR [88], in which reactions are computed using Park’s

finite-rate chemistry model [61]. The flow is modeled allowing for translational,

rotational and vibrational thermal non-equilibrium, and the mixture transport

coefficients (diffusion, viscosity and thermal conductivities) are computed us-

ing the self-consistent effective binary diffusion (SCEBD) and Gupta-Yos mod-

els [34, 66]. Note that the SCEBD model uses a mixing rule to approximate

the effective diffusion coefficient of each species s in the gas mixture, while

the Gupta-Yos model computes mixture viscosity and thermal conductivities.

Therefore, in the analysis of the cases that follow, the flux parameters (given

by (3.15) - (3.18)) and perturbations (φCE from (3.3) and φGCE,s from (3.14)
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or (B.29)) are determined using species-specific diffusion fluxes and mixture

shear stress and heat fluxes that are output from the DPLR solution.

Table 3.1: Freestream Conditions

Flat Plate Cylinder
(boundary layer) (normal shock)

M 3.0 11.4
p 2100 Pa 52 Pa
T 4000 K 265 K
u 4100 m/s 3740 m/s
χ

N2
6.04× 10−1 7.9× 10−1

χ
O2

1.0× 10−3 2.1× 10−1

χ
NO

7.0× 10−3 —–
χ

N
8.0× 10−3 —–

χ
O

3.80× 10−1 —–

3.4.1 Hypersonic 2-D boundary layer flow

The breakdown parameters from the flat-plate boundary layer flow case

are presented in Figure 3.4 and Figure 3.5. The diffusion, shear stress and

heat flux breakdown parameters were computed according to (3.15)-(3.18),

using either species-specific or mixture quantities as stated previously. The

breakdown parameters are plotted as a function of wall-normal distance, nor-

malized by the boundary layer thickness, δ0.99h, as indicated schematically in

Figure 3.4(a). The boundary layer thickness was determined as the location

above the surface where the enthalpy had recovered to 99% of the freestream

value.

In Figure 3.4(a), the diffusion breakdown parameter is plotted for each
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species s, and for each flux direction (x, y) in the boundary layer flow. The

diffusion flux computed in DPLR is determined for gradients in concentra-

tion only, while the thermal diffusion (flux due to gradients in temperature)

is neglected. Note that the diffusion fluxes due to streamwise concentration

gradients (Dx,s) are all essentially zero. The diffusion fluxes due to wall-normal

concentration gradients (Dy,s) are largest near the wall, with maximum values

observed at approximately 0.2δ0.99h. The strongest diffusion occurs for the

atomic oxygen and molecular oxygen, and all diffusion fluxes decay towards

zero approaching the boundary layer edge. The magnitudes of the diffusion

breakdown parameters are relatively small in comparison to the shear stress

breakdown parameters, shown in Figure 3.4(b). The relevant stress tensor

quantities in this two-dimensional boundary layer flow are the normal stress

components, τxx, τyy, τzz and the shear stress component τxy, while the remain-

ing stress tensor components are zero. The maximum values of the normal

stress breakdown parameters are comparable in magnitude to the diffusion

breakdown parameters, but the shear stress breakdown parameter is an or-

der of magnitude larger, with a maximum value at the wall of approximately

1.25× 10−3.

The heat flux breakdown parameters are provided in Figure 3.5(a) as

a function of wall-normal distance. The parameters in the figure represent

the translational, rotational and vibrational heat fluxes due to streamwise and

wall-normal temperature gradients. Note again that the streamwise compo-

nent of the heat flux breakdown parameters are essentially zero, as shown
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for qtr,x, q̃rot,x, and q̃vib,x. Each of the wall-normal heat flux breakdown pa-

rameters have maximum values at the wall, and it is observed that for this

boundary layer flow solution, qtr,y provides the largest contribution to the

non-equilibrium perturbation up to a distance of approximately 0.4δ0.99h. It is

also important to note that the internal heat flux breakdown parameters are

approximately the same magnitude as the shear stress breakdown parameter

throughout the boundary layer, which suggests the importance of including

the internal energy contributions in determining the non-equilibrium velocity

distribution function.

To assess the significance of these breakdown parameters, we use the

breakdown parameter profiles provided in Figures 3.4 and 3.5, as well as the

local flowfield information, to approximate the perturbation φ in the bound-

ary layer according to the Generalized Chapman-Enskog formulation φGCE,s

(3.14) and the Chapman-Enskog formulation φCE (3.3). The particle ther-

mal velocity and the particle internal energies are approximated by their most

probable values, and so Ci and Eint in these expressions take on values of

unity for purposes of this approximation. The purpose of this comparison be-

tween the perturbations φGCE and φCE is to understand the overall effect of

the additional diffusion and internal heat flux contributions on the calculation

of the perturbed distribution function. The resulting profiles are shown in

Figure 3.5(b). The perturbations computed from the Generalized Chapman-

Enskog formulation for each of the five species are represented by the solid and

broken lines, and are plotted as a function of wall-normal distance. The solid
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line with an open circle symbol represents the perturbation computed from

the regular Chapman-Enskog formulation. Several observations can be made

from the comparison of these perturbations. First, it is seen that the perturba-

tions are nearly indistinguishable in the outer part of the boundary layer, for

0.4 < y/δ0.99h. It is also observed that the perturbation φGCE,N for atomic ni-

trogen follows the Chapman-Enskog perturbation φCE almost perfectly, which

is consistent with the fact that the diffusion flux of atomic nitrogen is very

small throughout the boundary layer, as shown in Figure 3.4(a). The pertur-

bation φGCE,O of atomic oxygen, on the other hand, is seen to deviate slightly

from φCE by approximately 5% at a distance 0.2δ0.99h, which corresponds to

the location of maximum diffusion flux Dy,O in the boundary layer.

The comparison of the perturbations φGCE and φCE for the molecu-

lar species N2, O2 and NO show considerable differences near the wall (Fig-

ure 3.5(b), enlarged inset figure), which can be attributed to the inclusion of

the internal heat flux in the calculation of the perturbation φGCE. The magni-

tude of the Generalized Chapman-Enskog perturbation at the wall is approx-

imately 30 − 40% larger than the perturbation predicted by the Chapman-

Enskog formulation. The perturbation φGCE,O2 of molecular oxygen is driven

towards the Chapman-Enskog perturbation φCE for wall-normal distances

greater than 0.2δ0.99h, which corresponds to the large positive diffusion flux ob-

served in this region in Figure 3.4(a). Approaching the wall, however, the heat

flux contribution dominates the perturbation, and the perturbation φGCE,O2

follows the asymptotic trend of the other molecular constituents (molecular
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nitrogen and nitric oxide) toward the wall. Note that the diffusion flux break-

down parameters of molecular nitrogen and nitric oxide are comparatively

small throughout the boundary layer. It should also be noted that although

the perturbation φGCE becomes considerably larger than φCE near the wall,

the magnitude of the breakdown parameters are less than 0.1 throughout the

boundary layer, and thus Generalized Chapman-Enskog Theory is still ex-

pected to adequately represent the perturbation of the velocity distribution

function [23].

3.4.2 Hypersonic flow over a cylinder (normal shock flow)

The breakdown parameters from the hypersonic flow over a cylinder

are shown in Figure 3.6 and Figure 3.7 as a function of the distance along the

stagnation line x/R, where the cylinder surface is located at x/R = 0, and

the shock is located at x/R ≈ −0.289. The diffusion flux, shear stress and

heat flux breakdown parameters are computed in the same way as discussed

in Section 3.4.1. Unlike the boundary layer flow case, the gradients within the

normal shock become large very quickly, and the breakdown criterion is ex-

ceeded by the parameters at various x/R locations. To present the results from

this analysis, we only show the breakdown parameter profiles up to the x/R

location where the first parameter exceeds the breakdown criterion, B ≤ 0.1.

This region is upstream of the normal shock, and is represented schemati-

cally in the inset figure of Figure 3.6(a). As will be shown, the translational

heat flux parameter exceeds this breakdown criterion first, at a location of
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approximately x/R = −0.293. After this point (for larger values of x/R), the

approximations used to formulate the perturbation become invalid.

The diffusion flux breakdown parameters are shown in Figure 3.6(a)

per flux direction and per species. Although the diffusion fluxes become larger

within the shock and shock layer, they are completely negligible within the

breakdown region presented here. This observation, as well as the resulting

analysis of the boundary layer flow, suggests that the mass diffusion flux plays

a relatively minor role in the total perturbation of the velocity distribution

function.

The stress tensor breakdown parameters are shown in Figure 3.6(b).

In this case, the normal stresses increase appreciably before the breakdown

location, with τxx = 4.0 × 10−2 and τyy, τzz = 1.0 × 10−2, while the shear

stress parameter remains negligible, in contrast to the boundary layer flow

case. The translational, rotational and vibrational heat flux parameters are

presented next in Figure 3.7(a). The translational heat flux is the first pa-

rameter to exceed the breakdown criterion, with |qtr| = 0.1 at a location of

x/R = −0.2935. The values of the rotational and vibrational heat flux param-

eters, which lag the translational contribution, are also observed to increase

before the breakdown location.

The dominance of this translational heat flux is evident in the total per-

turbation, plotted in Figure 3.7(b) as a function of distance x/R. In this figure,

we have again computed the perturbation from the Generalized Chapman-

Enskog formulation which includes the contributions from the diffusion fluxes
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and internal heat fluxes on the total perturbation of the velocity distribu-

tion function. The curves representing the perturbation φGCE,s of the atomic

species N,O are indistinguishable from the regular Chapman-Enskog pertur-

bation; this underscores the fact that the diffusion flux has no effect on the

total perturbation for this flow case. The curves representing the perturbation

of the molecular species do deviate slightly from the regular Chapman-Enskog

perturbation, due to the influence of the internal heat fluxes on the total per-

turbation, but this difference (≈ 2%) is negligible in comparison to the bound-

ary layer flow case. As indicated by the breakdown parameters in this analysis,

it would be necessary to generate the surface reservoir at the breakdown lo-

cation of x/R ≈ −0.293, but it is seen that the regular Chapman-Enskog

perturbation φCE adequately represents the total perturbation, and the use of

the Generalized Chapman-Enskog perturbation is unnecessary for the normal

shock flow conditions considered here.

3.5 Summary

As a recap, the first part of this chapter presented an approach for gen-

erating a hybrid DSMC/Navier-Stokes solution using a non-equilibrium surface

reservoir. The non-equilibrium surface reservoir was first derived for a simple

gas, in which the DSMC particles are assumed to follow the Chapman-Enskog

distribution. The non-equilibrium surface reservoir formulation was then ex-

tended to gas mixtures with internal degrees of freedom, in which contribu-

tions from the species diffusion and internal energy flux terms were considered
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in the Generalized Chapman-Enskog framework. This extension allows for a

non-equilibrium description of the thermal velocity distributions as well as the

internal energy distributions for hybrid particle sampling, based on the fluxes

comprising the perturbation on the Maxwell-Boltzmann distribution.

To illustrate the significance of the additional diffusion and internal

heat flux terms present in the Generalized Chapman-Enskog perturbation,

the relative magnitudes of the diffusion, shear stress and heat flux parameters

were examined at a hybrid interface within non-equilibrium boundary layer

flow, as well as within the breakdown region near a normal shock. A simple

analysis was also presented in which the Generalized Chapman-Enskog per-

turbations and the regular Chapman-Enskog perturbation were approximated

and compared within the non-equilibrium flow regions. The purpose of this

analysis was to present a detailed and systematic approach to determine, for

a five-species air gas mixture:

1. The breakdown location in the Navier-Stokes flowfield solution,

which is determined as the location where the first parameter exceeds the

breakdown criterion (B ≤ 0.1).

2. How the Navier-Stokes solution breaks down, as indicated by the

breakdown parameters Di,s, τij, qi and q̃int,i.

3. Whether the hybrid interface requires the Generalized Chapman-

Enskog perturbation to properly describe the perturbed distribution function,

or if the Chapman-Enskog perturbation is sufficient.
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Chapter 4

Consistent Treatment of Transport

Coefficients

4.1 Overview

The quality of a hybrid simulation involving direct simulation Monte

Carlo (DSMC) and Navier-Stokes (CFD) solvers relies on the level of consis-

tency achieved in the physical models employed by the flow solvers, including

models for mass, momentum and energy transport as well as thermo-chemical

models [40, 79, 80]. This work presented in this chapter aims to address the

consistency of transport properties between DSMC and CFD solvers in the

context of either hybrid applications or general comparisons between indepen-

dent DSMC and CFD solutions. Finally, conclusions and recommendations

for use of these fitted parameters in DSMC applications are given in Section

4.5.

4.2 Transport Properties in CFD and DSMC

Within many CFD solvers, the coefficients of diffusion, viscosity and

thermal conductivity for a gas mixture may be computed directly from Chapman-

Enskog theory, which determines the transport fluxes to first order in the So-
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nine polynomial expansion. Simplified approaches have been developed for

approximation of the transport coefficients for gas mixtures. These approxi-

mate methods generally adopt simplifications to the Chapman-Enskog solution

through the use of mixing rules, and provide reasonable results at low to mod-

erate temperatures for neutral gas mixtures. The details of these transport

models are available in the literature [3, 15, 34, 66, 86], and comparisons have

been made among the models regarding their computational efficiency and ac-

curacy relative to the full Chapman-Enskog solution [45, 51, 60]. The transport

coefficients generated from these models are often obtained from expressions

involving the collision integrals as a function of temperature. The collision

integrals are computed from potentials based on ab initio calculations [76, 77]

or from potentials determined from experimental analysis [16] (e.g., molecular-

beam scattering results).

The DSMC method does not use a direct model to obtain the transport

coefficients of the gas; rather, DSMC uses a variety of collision cross section

models, in which the simulation particles are modeled as spheres of diameter d

which is a function of g, the relative speed of the collision pair. The transport

properties are a result of the transfer of mass, momentum and energy through

particle movement and collision dynamics; the transport properties are thus

adjusted by modifying the parameters used in the collision model. In this

work, the variable hard sphere (VHS) and variable soft sphere (VSS) models

are considered, although other models exist [2, 37]. To determine the proper

adjustment or calibration of these collision model parameters, the DSMC col-
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lision cross sections can be used to compute the collision integrals Ω1
st(1) and

Ω2
st(2) and ratio of collision integrals Bst, allowing for the calculation of the

DSMC transport coefficients from Chapman-Enskog Theory. This formula-

tion enables a direct comparison between the transport coefficients obtained

from the more realistic intermolecular potentials (herein referred to as first

principles calculations) in CFD solvers, and those obtained from the phe-

nomenological cross section models in DSMC. It also allows for a systematic

calibration of the DSMC model parameters to obtain consistency in the trans-

port coefficients employed in DSMC/CFD applications.

The VHS collision model is widely used throughout the DSMC com-

munity, and has been found to yield good agreement in the viscosity and

thermal conductivity coefficients when used for hybrid simulations involving

simple (single-species) gases [71, 79]. Deficiencies in the VHS collision model

make its extension to hybrid simulations involving gas mixtures difficult, as

consistency in the transport properties must be extended to include the mass

diffusion coefficients. As an alternative to VHS, the VSS collision model was

introduced by Koura and Matsumoto as a preferred collision model for use

in Monte Carlo simulations of gas mixtures when species diffusion plays an

important role [43]. The diffusion process is particularly important when con-

sidering chemically reacting flows or flows involving interaction with catalytic

surfaces, as the dominant heat flux contribution comes from the diffusion heat

flux. The diffusion heat flux arises due to the transport of energy through

dissociation/recombination reactions that occur as a result of the diffusion
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process, which is in turn driven by gradients in pressure, temperature and

species concentration.

The aim of this work is to establish a general approach for achieving

consistency in the transport properties between DSMC and CFD solvers. To

this end, it is assumed that the transport coefficients determined from more

realistic intermolecular potentials within the CFD transport models serve as

the ‘standard’ values for coefficients of diffusion, viscosity and thermal con-

ductivity. The details regarding the formulation of the DSMC transport co-

efficients from Chapman-Enskog Theory are provided in Section 4.3.1. The

DSMC transport coefficients are compared to the transport coefficients com-

puted from first principles, and a least-squares fitting process (described in

Section 4.3.2) is employed. In the fitting process, the VHS and VSS collision

model parameters are calibrated to provide the best fit of the DSMC trans-

port coefficients to the transport coefficients from first principles. The aim

of this DSMC parameter calibration is two-fold. We would first like to de-

termine which model (VHS or VSS) is best-suited to modeling a five-species

air mixture relative to the transport coefficients determined from first princi-

ples. The second objective is to present a recommended set of DSMC collision

model parameters that provide optimal agreement with the transport coeffi-

cients computed from more realistic intermolecular potentials over a range of

temperatures and that are common to non-ionized re-entry boundary layer flow

conditions. The results from the fitting process and recommended VHS/VSS

parameter values are presented in Section 4.4.
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4.3 Consistent Treatment of Transport Properties in
DSMC and CFD Solvers

As mentioned previously, the transport coefficients determined from

first principles within the CFD transport models serve as the ‘standard’ values

for the calibration of the DSMC collision model parameters. Various models

are available for computing the mass diffusion, viscosity and thermal con-

ductivity coefficients in continuum CFD solvers. In this work, the diffusion

coefficients are determined using the self-consistent effective binary diffusion

(SCEBD) model, and the viscosity and thermal conductivity coefficients are

determined from the model by Gupta et al. with Yos approximate mixing rules

(herein referred to as Gupta et al.-Yos) [34, 66]. In this section, the details of

the VHS and VSS collision cross section models and corresponding collision

integrals are presented, and the general fitting approach for the calibration of

the DSMC collision model parameters is described.

4.3.1 Representation of Transport Properties in DSMC: VHS/VSS
Collision Cross Section Models

The DSMC collision cross section models examined in this work include

the variable hard sphere (VHS) and variable soft sphere (VSS) models. Within

this framework, the DSMC simulation particles are modeled as hard spheres

of diameter d which is a function of g, the relative speed of the collision pair,

such that d ∼ (1/g)ω−1/2. The VSS model also includes a scattering angle

specified by the coefficient α, such that values of α > 1.0 result in a scattering

angle smaller than the corresponding value of the VHS model (in which α =
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1.0). The reduced scattering angle effectively establishes a forward-scattering

tendency of the colliding particles. This feature in VSS provides a model in

which both the diffusion and viscosity cross sections can be made consistent

with those from any intermolecular potential [43].

The fitting of the transport coefficients computed from VHS/VSS cross

sections to the transport coefficients from first principles is achieved through

application of the Nelder-Mead Simplex Method, which is used to determine

the set of VHS and VSS model parameters that provide the best fit in the

transport coefficients. It should be mentioned that while this approach pro-

duces a single best-fit value for each parameter examined, more sophisticated

approaches may be used to construct probability distributions describing the

best fit model parameter values [54, 55]. Before outlining the Nelder-Mead

approach, we first present the expressions used to determine the mixture dif-

fusion, viscosity and thermal conductivity coefficients based on the VHS and

VSS cross sections.

To allow for a consistent comparison to the species diffusion coefficients

from the SCEBD model [66], we compute the effective diffusivities Ds from

VHS/VSS cross sections according to

Ds =
(

1− ws
w

)(∑

t6=s

χt
Dst

)−1
. (4.1)

Here, χt is the mole fraction of species t, w and ws represent the weighting

factors defined as

ws =
ρs√
Ms

, (4.2)
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w =
∑

s

ws. (4.3)

In (4.2), ρs is the density of species s, Ms is the molar mass of species s, and

Dst is the binary diffusion coefficient for species pair s, t

Dst =
3kbT

16nm∗stΩ
1
st(1)

. (4.4)

In (4.4), kb is Boltzmann’s constant, n and T are the number density and

temperature, respectively, and m∗st is the reduced mass. In the case of the

species diffusion, it would be best to use the full matrix of multicomponent

(Chapman-Enskog) diffusion coefficients, Dst, in the fitting process directly,

rather than using the effective binary diffusion coefficients as shown in (4.1).

However, the SCEBD model considered in this work uses a mixing rule to ap-

proximate the full multicomponent diffusion coefficient matrix as five effective

binary diffusion coefficients, Ds. We therefore adopt this model to represent

the species diffusion coefficients from VHS/VSS, allowing for a consistent com-

parison between the two sets of transport coefficients.

The mixture viscosity from the VHS/VSS cross section models can

be determined from the first-order Chapman-Enskog approximation of the

mixture viscosity [12] which is defined as

[µ]1 =
∑

s

bs. (4.5)

The quantity bs is the contribution of each species to the overall mixture

viscosity [12] and may be determined by solving the following system
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χs = bs

{
χs

[µs]1
+
∑

t6=s

3χt
(ρ′s + ρ′t)Dst

(
2

3
+
mt

ms

Ast

)}

−χs
∑

t6=s

3bt
(ρ′s + ρ′t)Dst

(
2

3
− Ast

)
.

(4.6)

The quantities µs and Ast in (4.6) are defined as

[µs]1 =
5kbT

8Ω2
1(2)

, (4.7)

Ast =
Ω2
st(2)

5Ω1
st(1)

. (4.8)

The terms ρ′s, ρ
′
t refer to the density of species (s, t) when pure at the pressure

and temperature of the actual gas mixture, and ms,mt are the molecular

masses of species s, t, respectively.

The mixture translational thermal conductivity [12] is determined by

[Ktr]1 =
∑

s

as. (4.9)

The quantity as is the contribution of each species to the overall mixture

translational thermal conductivity [12] and may be determined by solving the

following system

χs = as

{
χs

[λs]1
+
∑

t6=s

Tχt
5pDst

(
6

[
ms

(ms +mt)

]2
+ (5− 4Bst)

[
ms

(ms +mt)

]2

+8
msmt

(ms +mt)2
Ast

)}
− χs

∑

t6=s
at

[(
T

msmt

(ms +mt)2

)/
5pDst

](
11− 4Bst − 8Ast

)
.

(4.10)
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In (4.10) the quantities [λs]1 and Bst are defined

[λs]1 =
25cvkbT

16Ω2
1(2)

, (4.11)

Bst =
5Ω1

st(2)− Ω1
st(3)

5Ω1
st(1)

, (4.12)

where cv is the specific heat at constant volume of species s, and p is the

pressure of the gas mixture.

The rotational and vibrational conductivities are determined using Eu-

cken’s formula, in which it is assumed that the conductivity of the gas is

separated into two non-interacting parts, [Ktr]1 and Kint [12]. The internal

thermal conductivities are given by

Krot =
∑

i∈s

ρicrot∑

j∈t
χj/Dij

, (4.13)

Kvib =
∑

i∈s

ρicvib∑

j∈t
χj/Dij

, (4.14)

where ρi is the partial density defined as the product of the mixture density,

ρ and the species mass fraction, Yi

ρi = ρYi. (4.15)

Finally, the collision integrals involved in computing (4.5) and (4.9) and the

ratio of collision integrals in (4.12) can be expressed in terms of the VHS

parameters as follows
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Ω1
st(1)

∣∣∣
V HS

=
π

2
d2ref

(
kbT

2πm∗st

)1/2(
Tref
T

)ω−1/2 [
Γ(7/2− ω)

Γ(5/2− ω)

]
, (4.16)

Ω2
st(2)

∣∣∣
V HS

=
π

3
d2ref

(
kbT

2πm∗st

)1/2(
Tref
T

)ω−1/2 [
Γ(9/2− ω)

Γ(5/2− ω)

]
, (4.17)

Bst

∣∣∣
V HS

=
5Γ(9/2− ω)− Γ(11/2− ω)

5Γ(7/2− ω)
. (4.18)

The collision integrals are expressed according to the VSS collision model as

Ω1
st(1)

∣∣∣
V SS

=

(
2

α + 1

)
Ω1
st(1)

∣∣∣
V HS

, (4.19)

Ω2
st(2)

∣∣∣
V SS

=

[
4α

(α + 1)(α + 2)

]
Ω2
st(2)

∣∣∣
V HS

. (4.20)

The ratio of collision integrals Bst

∣∣
V SS

for the VSS collision model is identical

to the expression for Bst

∣∣
V HS

given in (4.18). In (4.7), the collision integral

Ω2
1(2) is of the form given in (4.16) or (4.19) with s = t, and in (4.16)-(4.20),

Γ(x) is the gamma function. A detailed formulation of these collision integrals

is provided in Appendix C.

Within DSMC, the VHS and VSS parameters in (4.16)-(4.20) are of-

ten determined simply as the average values of species s and t (e.g., dref =

1
2
(dref,s + dref,t)), regardless of the specific collision partners involved in the

collision. The model parameters determined using this approach are herein
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referred to as collision-averaged values. When considering collisions within

a gas mixture, however, the VHS and VSS model parameters should be pre-

scribed for each specific collision pairing, rather than using a simple averaging

rule for all collision pairs [2, 40]. The model parameters determined with this

approach are herein referred to as collision-specific values.

4.3.2 Generation of Best-Fit VHS/VSS Parameters

The aim of the fitting process is to determine a best fit of the DSMC

collision model parameters that yield good agreement between the transport

coefficients determined from more realistic intermolecular potentials and from

the VHS/VSS cross section models. The gas mixture considered in the present

work is a five-species air gas mixture (N2, O2, NO,N,O). The conditions con-

sidered in this work represent typical boundary layer edge conditions for the

Orbiter re-entry trajectory point of Mach 20, which corresponds to a pressure

of 2300 Pa. The temperatures considered in the present work range from

1000 K to 5000 K, which are well within the limits of the transport models

considered here. The transport coefficients obtained from first principles are

computed at temperature increments of 100 K assuming an equilibrium or

(prescribed) non-equilibrium composition.

Several approaches may be taken to achieve an optimal fit of the VHS

and VSS parameters. Previous studies have used the collision integrals as

the fitting metric to determine the best fit of the DSMC collision model pa-

rameters, while other works compute and fit to the transport coefficients di-
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rectly [40, 43]. Use of the collision integrals in the fitting process is the more

physically consistent approach, in that the collision integrals provide the link

between the dynamics of binary collisions and the macroscopic transport co-

efficients. This work has found, however, that this approach does not allow

for the best representation of the SCEBD/Gupta et al.-Yos transport coeffi-

cients by the VHS/VSS models when the DSMC collision model is inadequate

(as may be the case for VHS applied to gas mixtures) or overconstrained (as

may be the case for collision-averaged pairing). Under these circumstances,

it is important to note that fits to the collision integrals do not inherently

include any information regarding the composition of the gas mixture being

considered, as the collision integrals are dependent on temperature only. This

feature of the collision integrals is evident when considering gas mixtures com-

prising one or two primary constituents with several trace species. The use of

collision integrals for the fitting of transport coefficients becomes problematic,

since the fits made for collisions between trace species are weighted equally

with collisions between the major constituents. A careful fitting of a collision

model with a sufficient number of parameters should be able to overcome this

issue, but the fitting of any collision model parameters in which the problem

is over-constrained proves challenging without introducing a form of weighting

in the fitting of the collision integrals.

The work presented here highlights the use of transport coefficients in

the fitting process, because information regarding the gas mixture composi-

tion is inherently included in the determination of the transport coefficients.
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In this work, only the reference diameters, temperature exponents and, where

necessary, the VSS parameter α are considered as variable parameters in the

fitting process, while the reference temperature is assumed to have a constant

value of 2880 K. To remain physically consistent with the VHS and VSS

models, the temperature exponent should be constrained to within the limits

of a Maxwell molecule and a hard sphere molecule, such that ω is less than

1.0, but greater than 0.5. In the cases examined here, reasonable fits were

achieved by allowing the reference diameter to remain unconstrained, while

the temperature exponents were constrained to values of 0.73 ± 0.05. The

VSS exponent α is also constrained to remain within values of 1.0 < α < 2.0,

where α = 1.0 corresponds to the VHS deflection angle, and α = 2.0 is an

accepted upper limit to the VSS exponent [2]. The fits are generated for the

VHS and VSS models using either collision-averaged or collision-specific pair-

ing implementations. Considering the VHS model, this requires the solution

of a best-fit problem involving ten parameters for the collision-averaged and

thirty parameters for the collision-specific pairing approaches. The VSS model

requires the solution of a best-fit problem involving fifteen parameters for the

collision-averaged and forty-five parameters for the collision-specific pairing

approaches.

To construct the fitting problem, initial values are prescribed for all

VHS and VSS parameters. The transport coefficients are then computed and

collectively expressed in vector form as a function of the VHS or VSS param-

eters (using collision integrals calculated from the VHS/VSS cross sections)
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over the desired temperature range according to (4.1), (4.5), (4.9), (4.13), and

(4.14). Note that while the transport coefficients of mass diffusion, viscosity

and thermal conductivity are functions of temperature, the VHS and VSS pa-

rameters are not. A second vector comprising the transport coefficients given

by the ‘standard’ SCEBD and Gupta et al.-Yos models (using collision inte-

grals calculated from more realistic intermolecular potentials) is constructed,

and the goal of the fitting process is to minimize the distance (or error) between

the two vectors by adjusting the VHS or VSS parameters.

The VSS model is developed from the VHS model, and often the same

values are used for the common parameters dref and ω. To this end, the pa-

rameters dref and ω are first calibrated by fitting the mixture viscosity and

translational thermal conductivity coefficients from the VHS and Gupta et

al.-Yos models. The additional parameter α in the VSS model mostly in-

fluences the diffusion-driven coefficients (i.e., the coefficients of diffusion and

internal thermal conductivities). The VSS exponents α are thus subsequently

calibrated by fitting the internal thermal conductivities and diffusion coeffi-

cients, while the dref and ω parameters are held ‘fixed’. It is important to note

that while modification of the parameter α mostly affects the diffusion-driven

coefficients, it does have a non-negligible influence on the viscosity and trans-

lational thermal conductivity coefficients. In some cases, the best-fit values of

the parameters dref and ω used in the VSS model are allowed to relax slightly

during the calibration of the α parameters, to achieve the best fit in all of the

transport coefficients.

88



The adjustment of the VHS/VSS parameters is performed using the

Nelder-Mead Simplex Method [46, 59]. This method uses an iterative direct

search algorithm to determine the appropriate set of variables required to

achieve a minimum difference between the two vectors. The vector of transport

coefficients computed from the initial VHS/VSS parameter values forms the

first function iteration. The simplex method then perturbs the parameters,

and the new transport coefficients are computed and assembled into vector

form. If the resulting perturbation produces a smaller distance between the

vectors, the simplex method extends the perturbation in the same direction

and continues the search. If the perturbation resulted in a larger distance

between the two vectors, the simplex method searches in the opposite direction.

For the fitting problems examined in this work, the Nelder-Mead algorithm

demonstrated rapid convergence within several thousand iterations, and the

solution was not sensitive to the initial values chosen, provided they were

realistic. The convergence history and sensitivity of the best-fit parameters to

the initial values is presented for one of the cases in Appendix D.

To demonstrate the improvement in the agreement between the trans-

port coefficients using this fitting approach, we apply the same techniques to

construct a fitting problem involving the collision integrals as a function of

temperature as the fitting metric. Initial values are prescribed for all VHS

and VSS parameters, and the collision integrals are computed and collectively

expressed in vector form according to (4.16)-(4.18) or (4.18)-(4.20). A sec-

ond vector comprising the collision integrals from first principles used in the
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SCEBD/Gupta et al.-Yos models is constructed, and the Nelder-Mead Simplex

Method is again applied to determine the set of best-fit VHS or VSS param-

eters. The best-fit VHS/VSS transport coefficients are then computed from

these parameters and compared to the SCEBD/Gupta et al.-Yos transport

coefficient values, allowing for comparison between the fitting approaches.

The aim of this DSMC parameter fitting is two-fold. We would first

like to determine which model (VHS or VSS) is best-suited for modeling a

five-species air mixture with regards to the transport coefficients discussed

above. We then aim to establish the best approach for determining these

quantities on a collisional basis, using either collision-averaged or collision-

specific pairing. Both of these items are investigated in the context of a five-

species air gas mixture in chemical equilibrium, in which the composition is

well-defined. A recommended set of VHS/VSS collision model parameters are

presented based on the equilibrium composition. These recommended collision

model parameters are then examined for use in three (extreme) chemical non-

equilibrium gas mixtures. The transport coefficients in these mixtures are

computed from the DSMC collision models using the best fit parameters from

the equilibrium transport coefficient fits, and from the collision integral fits.

These values are then compared to the corresponding SCEBD/Gupta et al.-Yos

values. The final objective is to provide a recommended set of collision model

parameters that closely match the SCEBD and Gupta et al.-Yos transport

coefficients over a range of temperatures that are common to non-ionized re-

entry conditions.
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4.4 Results

4.4.1 Equilibrium Composition and Transport Coefficients of Five-
species Air

Before presenting the VHS and VSS fits, we first examine the diffusion,

viscosity and thermal conductivity coefficients for the five-species air mixture

from the SCEBD and Gupta et al.-Yos models. The transport coefficients

are computed over the temperature range of 1000K to 5000K assuming an

equilibrium mixture composition, which is computed using the MUTATION

library [51]. The mixture composition is shown in Figure 4.1(a). It should be

noted that the CEA thermodynamic database used for the calculation of the

SCEBD/Gupta et al.-Yos transport coefficients is consistent with the MUTA-

TION library, as demonstrated by the excellent agreement in the equilibrium

composition shown in Figure 4.1(a). The species concentrations exhibit the

strongest variation at temperatures of around 3000K and again at 5000K,

corresponding to the dissociation/recombination temperatures of O2 and N2,

respectively.

The effective binary diffusion coefficients, mixture viscosity coefficients

and thermal conductivity coefficients of the gas mixture are shown in Fig-

ure 4.1(b-d) as a function of temperature. The translational thermal conduc-

tivity (shown by the solid line in Figure 4.1(d)) provides the largest contribu-

tion to the total mixture conductivity, and also shows the strongest variation

due to dissociation/recombination of O2 at 3000K.

91



T [K]

χ
s

1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

N
2

(MUTATION)

O
2

NO

N

O

N
2

(CEA)

O
2

NO

N

O

NO

N
2

O
2

O

N

(a) Composition (by mole fraction).

T [K]

D
s

[m
2
/s

]

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

D
N2

D
O2

D
NO

D
N

D
O

(b) Effective diffusion coefficients.

T [K]

µ
[k

g
/m

­s
]

1000 2000 3000 4000 5000

6.0E­05

8.0E­05

1.0E­04

1.2E­04

1.4E­04

(c) Mixture viscosity coefficient.

T [K]

K
[W

/m
­K

]

1000 2000 3000 4000 5000

5.0E­02

1.0E­01

1.5E­01

2.0E­01 K
tr

K
rot

K
vib

(d) Thermal conductivity coefficients.

Figure 4.1: (a) Five-species air mixture composition by mole fraction χs as
a function of temperature, ranging from 1000K to 5000K, at 2300Pa. (b)
Effective diffusion coefficients for five-species air gas mixture as a function
of temperature. (c) Viscosity coefficient for five-species air gas mixture as a
function of temperature. (d) Translational, rotational and vibrational ther-
mal conductivity coefficients for five-species air gas mixture as a function of
temperature.
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4.4.2 Collision-Averaged Best-Fit Parameters: VHS/VSS Collision
Models

The transport coefficients predicted by the SCEBD and Gupta et al.-

Yos transport models are presented in Figures 4.2(a)-4.4(a). The correspond-

ing transport coefficients generated from the best-fit VHS collision-averaged

parameter set are plotted in these figures for comparison. The error presented

in Figures 4.2(b)-4.4(b) and Figures 4.2(c)-4.4(c) represents the difference in

the VHS/VSS transport coefficients and the SCEBD/Gupta et al.-Yos trans-

port coefficients, normalized by the SCEBD/Gupta et al.-Yos transport coef-

ficient value and presented as a percentage. Regarding error figures through-

out the paper, the error in the VHS/VSS transport coefficients relative to

the SCEBD/Gupta et al.-Yos values shown in the black line plots represent

the error resulting from the transport coefficient fitting approach, while the

gray line plots represent the error resulting from the collision integral fitting

approach. In this first set, the effective binary diffusion, viscosity and ther-

mal conductivities are computed according to the best-fit parameters from

the VHS/VSS collision-averaged pairing approach (denoted as VHS < s, t >

and VSS < s, t >), in which the parameters considered in the fit include five

reference diameters, dref , five temperature exponents, ω and, for VSS, five

scattering exponents α.

The recommended best-fit parameters generated from transport coeffi-

cient fits are provided in Table 4.1. The number of significant figures reported

in values are dictated by the sensitivity of these fitted values to the initial
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Figure 4.2: (a) Comparison of effective binary diffusion coefficients for five-
species air, computed from fitted VHS collision-averaged pairing approach
(dashed lines with open symbols) and SCEBD model (solid lines with closed
symbols). Percent error of fitted VHS (b) and fitted VSS (c) collision-averaged
effective diffusion coefficients relative to SCEBD model. In (b) and (c), black
lines represent error using transport coefficient fits, while gray lines represent
error using collision integral fits.
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Figure 4.3: (a) Comparison of viscosity coefficient for five-species air, com-
puted from fitted VHS collision-averaged pairing approach (dashed line with
open symbols) and Gupta et al.-Yos model (solid line with closed symbols).
Percent error of fitted VHS (b) and fitted VSS (c) collision-averaged viscos-
ity coefficient relative to Gupta et al.-Yos model. In (b) and (c), black lines
represent error using transport coefficient fits, while gray lines represent error
using collision integral fits.
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Figure 4.4: (a) Comparison of thermal conductivity coefficients for five-species
air, computed from fitted VHS collision-averaged pairing approach (dashed
lines with open symbols) and Gupta et al.-Yos model (solid lines with closed
symbols). Percent error of fitted VHS (b) and fitted VSS (c) collision-averaged
thermal conductivity coefficients relative to Gupta et al.-Yos model. In (b) and
(c), black lines represent error using transport coefficient fits, while gray lines
represent error using collision integral fits.
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Table 4.1: Collision-Averaged VHS/VSS Parameters (Fits to Transport Coef-
ficients)

VHS dref [Å] ω VSS dref [Å] ω α

N2 3.20 0.68 N2 3.20 0.68 1.348
O2 2.80 0.68 O2 2.60 0.68 1.547
NO 3.30 0.76 NO 3.30 0.76 1.62
N 2.60 0.70 N 2.70 0.70 1.608
O 2.32 0.76 O 2.20 0.76 1.90

parameter guesses used in the search algorithm (Appendix D). Note that the

VSS reference diameter values for N and O were relaxed slightly from the VHS

values.

The effective binary diffusion coefficients are presented in Figure 4.2(a)

as a function of temperature, and the corresponding error of the fitted VHS

and VSS effective diffusion coefficients relative to the SCEBD model are also

provided (Figure 4.2(b) and Figure 4.2(c), respectively). The error in the diffu-

sion coefficients from the VHS model approach nearly 30% using the transport

coefficient fits. Keep in mind that the VHS parameters are only calibrated for

coefficients of viscosity and translational thermal conductivity, while the cali-

bration of the VSS parameters includes the diffusion-driven coefficients. The

VSS model shows a substantial improvement in the modeling of the diffusiv-

ities over the VHS model, as evident by the overall decrease in percent error

shown in Figure 4.2(c) relative to Figure 4.2(b). The effective binary diffusion

coefficients match the SCEBD values to within 5% over the entire range of

temperatures considered.
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The mixture viscosity (Figure 4.3(a)) and thermal conductivities (Fig-

ure 4.4(a)) are also plotted as a function of temperature. Again, the error

corresponding to the fitted VHS and VSS collision models are presented in

Figures 4.3(b)-4.4(b) and Figures 4.3(c)-4.4(c), respectively. The viscosity and

translational thermal conductivity computed by the best-fit VHS parameters

(Figures 4.3(b), 4.4(b)) provide excellent agreement to the first principles cal-

culations. The internal thermal conductivities, however, are in error of nearly

20%. The viscosity and thermal conductivity coefficients computed by the

best-fit VSS collision-averaged parameters lie within 3-4% of the Gupta et

al.-Yos values (Figures 4.3(c), 4.4(c)), including the internal thermal conduc-

tivities. Note that the VSS transport coefficient fits provides significant im-

provement over the collision integral fits (shown by gray lines in Figures 4.2(c)-

4.4(c)).

In all of the cases presented here, the best-fit VHS/VSS collision model

parameters were determined by assuming that all transport coefficients are

weighted equally over the range of temperatures. It should also be noted

that each effective binary diffusion coefficient (DN2, DO2, etc.) and each ther-

mal conductivity coefficient (Ktr, Krot, etc.) is considered as an individual

transport coefficient, and these are weighted equally. Thus, the fitting process

effectively involves determining the collision model parameters which yield the

best fit across a total of nine transport coefficients (five effective diffusion co-

efficients, one viscosity coefficient and three thermal conductivity coefficients).

Note that alternative weighting approaches could easily be applied in order to
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produce a balance across the fitting of all types or classes of transport (mass,

momentum and energy); alternatively, one could produce a bias on the fitting

of a particular transport property. To achieve the former for the cases pre-

sented here, it would be necessary to specify a weight of one-fifth on each of

the diffusion coefficients, a weight of unity on the coefficient of viscosity, and a

weight of one-third on each of the thermal conductivity coefficients. In a sim-

ilar way, a bias would be achieved by assigning a larger weight to the desired

transport coefficient(s) such that more importance is placed on the fitting of

the particular quantity.

4.4.3 Collision-Specific Best-Fit Parameters: VHS/VSS Collision
Models

In the next set of cases presented, the VHS/VSS transport coeffi-

cients are fit to the SCEBD/Gupta et al.-Yos transport coefficients using the

collision-specific pairing approach for determination of the VHS/VSS collision

model parameters (denoted as VHS s, t and VSS s, t). The transport coef-

ficients predicted by the SCEBD and Gupta et al.-Yos transport models are

again presented as a function of temperature in Figures 4.5(a)-4.7(a). The

corresponding transport coefficients generated from the best-fit VHS collision-

specific parameter set are plotted in these figures for comparison.

The errors in the transport coefficients generated from the best-fit

VHS/VSS parameters relative to the SCEBD/Gupta et al.-Yos coefficients

are presented in Figures 4.5(b)-4.7(b) and Figures 4.5(c)-4.7(c), respectively.
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Figure 4.5: (a) Comparison of effective binary diffusion coefficients for five-
species air, computed from fitted VHS collision-specific pairing approach
(dashed lines with open symbols) and SCEBD model (solid lines with closed
symbols). Percent error of fitted VHS (b) and fitted VSS (c) collision-specific
effective diffusion coefficients relative to SCEBD model. In (b) and (c), black
lines represent error using transport coefficient fits, while gray lines represent
error using collision integral fits.
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Figure 4.6: (a) Comparison of viscosity coefficient for five-species air, com-
puted from fitted VHS collision-specific pairing approach (dashed line with
open symbols) and Gupta et al.-Yos model (solid line with closed symbols).
Percent error of fitted VHS (b) and fitted VSS (c) collision-specific viscosity
coefficients relative to Gupta et al.-Yos model. In (b) and (c), black lines
represent error using transport coefficient fits, while gray lines represent error
using collision integral fits.
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Figure 4.7: (a) Comparison of thermal conductivity coefficients for five-species
air, computed from fitted VHS collision-specific pairing approach (dashed lines
with open symbols) and Gupta et al.-Yos model (solid lines with closed sym-
bols). Percent error of fitted VHS (b) and fitted VSS (c) collision-specific
thermal conductivity coefficients relative to Gupta et al.-Yos model. In (b)
and (c), black lines represent error using transport coefficient fits, while gray
lines represent error using collision integral fits.
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The parameters considered in this fit include fifteen reference diameters, dref ,

fifteen temperature exponents, ω, and, for VSS, fifteen scattering exponents, α.

A direct comparison of these fits to those obtained using the collision-averaged

pairing approach in Figures 4.2-4.4 indicates that the collision-specific pairing

has only a small influence on the quality of agreement between the trans-

port coefficients computed from the VHS/VSS models and the first principles

calculations. The most significant improvement in the results are obtained

when using the appropriate model (VSS) in the fitting, rather than simply

using more adjustable parameters with an insufficient model (e.g., VHS with

collision-specific pairing).

The recommended best-fit VHS/VSS parameters corresponding to this

collision pairing are given in Table 4.2. Again, the number of significant fig-

ures reported in values are dictated by the sensitivity of these fitted values

to the initial parameter guesses used in the search algorithm (see example

in Appendix D). Also note that several of the VSS reference diameters and

temperature exponent values were relaxed from the VHS values to provide

the best fit across the transport coefficients. The VHS effective diffusion co-

efficients again show errors of up to 30% using the collision-specific pairing

(Figure 4.5(b)). The VSS collision-specific pairing produce errors of approx-

imately 5% at the lower temperature range (Figure 4.5(c)), but the error is

measurably reduced at higher temperatures relative to the collision-averaged

pairing. The error of the VHS/VSS mixture viscosity coefficients relative to

the Gupta et al.-Yos values are shown in Figure 4.6(b) and Figure 4.6(c), re-
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Table 4.2: Collision-Specific VHS/VSS Parameters (Fits to Transport Coeffi-
cients)

VHS VSS

dref [Å] N2 O2 NO N O dref [Å] N2 O2 NO N O

N2 3.31 2.68 3.24 3.10 2.66 N2 3.25 2.77 3.64 2.90 2.50
O2 3.41 3.46 2.95 2.72 O2 2.90 3.01 2.60 2.36
NO 3.12 3.02 2.61 NO 2.80 2.82 2.70
N 3.20 2.31 N 3.00 2.70
O 2.61 O 2.75

ω N2 O2 NO N O ω N2 O2 NO N O

N2 0.68 0.68 0.78 0.72 0.78 N2 0.68 0.68 0.78 0.76 0.73
O2 0.70 0.70 0.72 0.78 O2 0.70 0.70 0.72 0.78
NO 0.72 0.75 0.77 NO 0.72 0.75 0.77
N 0.76 0.75 N 0.76 0.75
O 0.74 O 0.74

α N2 O2 NO N O α N2 O2 NO N O

N2 N2 1.4 1.30 1.9 1.4 1.29
O2 O2 1.8 1.8 1.3 1.1
NO NO 1.3 1.4 1.6
N N 1.2 1.5
O O 1.2

spectively. The errors from the VHS and VSS collision-averaged and collision-

specific fits of the viscosity are nearly equivalent, although the values predicted

from the collision integral fits (in gray lines) show improvement by using the

collision-specific pairing. The thermal conductivity coefficients from the VHS

collision-specific pairing and the Gupta et al.-Yos values are plotted in Fig-

ure 4.7(a) as a function of temperature, and the corresponding errors of the

VHS/VSS collision-specific values relative to the Gupta et al.-Yos coefficients

are also shown in Figure 4.7(b) and Figure 4.7(c). The errors in the fit of the
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translational and internal thermal conductivities are equivalent to the VHS

and VSS collision-averaged errors.

This pairing approach provides forty-five total parameters in the Nelder-

Mead algorithm, fifteen of which are free parameters, and thirty which are

bounded. By comparison of the fits in the effective diffusion, viscosity and

thermal conductivity coefficients obtained using the previous VHS/VSS col-

lision pairing approaches, it can be concluded that the VSS collision-specific

pairing approach achieves the best overall match to the SCEBD and Gupta

et al.-Yos transport models. The errors in the effective diffusion coefficients,

mixture viscosity and thermal conductivities in Figures 4.2(c)-4.7(c) are all

less than ±5% over the range of temperatures considered.

4.4.4 Extension to Chemical Non-equilibrium

The cases presented above provide a comparison of the VHS and VSS

collision models in their representation of the transport coefficients for an equi-

librium five species air mixture over a temperature range of 1000K to 5000K.

The fitted parameter values were determined as the parameters which minimize

the difference in the transport coefficients over a range of temperatures, and are

referred to as transport coefficient fits. It should be emphasized that since the

transport coefficients were used as the fitting metric, this approach required

knowledge of the (equilibrium) mixture composition. In order to examine the

applicability of these recommended parameter values in non-equilibrium cases,

we use the fitted values determined from the transport coefficient fits to com-
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pute the transport coefficients in three non-equilibrium compositions. These

cases correspond to fully dissociated (79% N and 21% O by mole fraction) air

mixture, fully recombined (79% N2 and 21% O2 by mole fraction) air mixture,

and an intermediate (70% N2, 15% O2, 10% NO and 5% N by mole frac-

tion) non-equilibrium air mixture over the temperature range examined. For

brevity, only the results from the VSS model with collision-specific pairing are

presented in these non-equilibrium cases, as the fits from the VHS model were

found to be relatively poor. The transport coefficients determined from the

collision integral fitting approach (outlined in Section 4.3.2), are also presented

for comparison.

The first coefficients presented are the effective binary diffusion co-

efficients for the fully recombined, fully dissociated and intermediate cases.

The percent error of these diffusion coefficients relative to the correspond-

ing SCEBD values is presented in Figure 4.8(a-c), represented by black lines

with symbols. The percent error of the diffusion coefficients computed from

the best fit collision integral approach relative to the corresponding SCEBD

values are also shown for comparison (gray lines with symbols). In the fully

recombined case, the diffusion coefficients from the transport coefficient fits

(black lines) and the collision integral fits (gray lines) provide agreement to

the SCEBD model to within 3% across the range of temperatures considered,

respectively. When these fitted parameter values are used in the fully dissoci-

ated gas mixture, it is observed (Figure 4.8(b)) that the error in the diffusion

coefficients from both fitting approaches remains less than 4% over the temper-
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Figure 4.8: Percent error of fitted VSS collision-specifc effective binary dif-
fusion coefficients relative to SCEBD model for (a) fully recombined air, (b)
fully dissociated air and (c) intermediate chemical non-equilibrium conditions.
Black lines represent error using transport coefficient fitted parameters (from
equilibrium composition), while gray lines represent error using collision inte-
gral fits.

107



T [K]

%
e

rr
o

r

1000 2000 3000 4000 5000
­20

­15

­10

­5

0

5

10

15

20

µ
R

VSS s,t

µ
R

VSS s,t CI

(a) fully recombined air (N2, O2)

T [K]

%
e

rr
o

r

1000 2000 3000 4000 5000
­20

­15

­10

­5

0

5

10

15

20

µ
D

VSS s,t

µ
D

VSS s,t CI

(b) fully dissociated air (N,O)

T [K]

%
e

rr
o

r

1000 2000 3000 4000 5000
­20

­15

­10

­5

0

5

10

15

20

µ
I
VSS s,t

µ
I
VSS s,t CI

(c) intermediate non-equilibrium air
(N2, O2, NO,N)

Figure 4.9: Percent error of fitted VSS collision-specifc viscosity coefficients
relative to Gupta et al.-Yos model for (a) fully recombined air, (b) fully dis-
sociated air and (c) intermediate chemical non-equilibrium conditions. Black
lines represent error using transport coefficient fitted parameters (from equi-
librium composition), while gray lines represent error using collision integral
fits.
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Figure 4.10: Percent error of fitted VSS collision-specifc thermal conductivity
coefficients relative to Gupta et al.-Yos model for (a) fully recombined air,
(b) fully dissociated air and (c) intermediate chemical non-equilibrium condi-
tions. Black lines represent error using transport coefficient fitted parameters
(from equilibrium composition), while gray lines represent error using collision
integral fits.
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Table 4.3: Collision-Averaged/Collision-Specific VSS Parameters (Fits to Col-
lision Integrals)

VSS VSS

dref [Å] ω α dref [Å] N2 O2 NO N O

N2 3.02 0.68 1.33 N2 3.26 2.84 3.19 2.88 2.54
O2 2.94 0.70 1.43 O2 3.17 3.15 2.69 2.71
NO 3.10 0.71 1.46 NO 3.19 2.75 2.76
N 2.61 0.78 1.50 N 2.53 2.59
O 2.46 0.78 1.54 O 2.41

ω N2 O2 NO N O

N2 0.69 0.73 0.72 0.69 0.71
O2 0.76 0.74 0.75 0.74
NO 0.74 0.73 0.75
N 0.73 0.72
O 0.70

α N2 O2 NO N O

N2 1.42 1.39 1.48 1.45 1.41
O2 1.53 1.51 1.42 1.48
NO 1.55 1.46 1.62
N 1.38 1.51
O 1.36

ature range. The error from the transport coefficient fits in the intermediate

non-equilibrium air mixture becomes measurably worse at lower temperatures,

with errors up to 8% (Figure 4.8(c)). In comparison, the collision integrals fits

in this case provide excellent agreement to the Gupta et al.-Yos values, with

errors of less than 4% over the temperature range.

Figures 4.9 and 4.10 show the percent error of the mixture viscosity

and the thermal conductivities, respectively, relative to the Gupta et al.-Yos

model for the non-equilibrium cases considered. Again, black lines and sym-
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bols represent the errors in transport coefficients computed using parameters

from transport coefficient fits, while gray lines and symbols represent the er-

rors in coefficients using parameters from collision integral fits. The mixture

viscosity fits using both transport coefficient fits and collision integral fits are

very good for the fully recombined case (Figure 4.9(a)), fully dissociated case

(Figure 4.9(b)), as well as for the intermediate case (Figure 4.9(c)). Similar

results are found for the thermal conductivity fits using both transport coef-

ficient fits and collision integral fits shown in Figures 4.10(a-c), with errors

less than 5% over the range of temperatures examined. In all of the cases

examined in this work, it is found that the collision integral fits using the VSS

collision model with collision-specific parameter pairing consistently provides

the best fits to the SCEBD and Gupta et al.-Yos coefficients. This is true re-

gardless of the state of the gas mixture composition, i.e. chemical equilibrium

(Figures 4.5(c)-4.7(c)) vs. non-equilibrium (Figures 4.8(c)-4.10(c)), as the er-

rors from the collision integral fits in all conditions examined are less than

5%. The values for the VSS collision-specific parameters determined from the

collision-integral fits are provided in Table 4.3, and are recommended for use

in any non-ionized gas mixture.

The collision integral fits using the VSS collision model with collision-

averaged parameter pairing (also tabulated in Table 4.3) achieve reasonable

agreement with the SCEBD and Gupta et al.-Yos coefficients (presented for

the chemical equilibrium gas mixture in Section 4.4.2), but the error in the

diffusion coefficients increases to nearly 10%. While this error may be ac-
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ceptable for certain applications, it was found in Section 4.4.2 that the results

produced from the transport coefficient fitted parameters demonstrated better

overall agreement with the SCEBD and Gupta et al.-Yos coefficients. This is

due to the fact that the composition ‘informs’ the fitting process through the

expressions for the transport coefficients. Thus, in cases where the composition

is close to chemical equilibrium and collision-averaged pairing is required, the

VSS parameters provided in Table 4.1 may be used. However, in cases where

the composition is far from equilibrium, the best fit VSS collision-specific pa-

rameters (based on collision integral fits) provided in Table 4.3 should be used.

4.5 Summary

A general approach for achieving consistency in the species diffusion,

viscosity and thermal conductivity coefficients between the phenomenological

VHS/VSS collision cross section models and the SCEBD/Gupta et al.-Yos

models was presented for five-species air. The DSMC transport coefficients

were approximated from the SCEBD model (diffusion), Chapman-Enskog the-

ory (viscosity and translational thermal conductivity) and Eucken’s relation

(internal thermal conductivities), and the corresponding collision integrals

were determined according to the VHS or VSS collision cross section model.

The transport coefficients from the SCEBD and Gupta et al.-Yos models were

generated using collision integrals computed from more realistic intermolecu-

lar potentials. These transport coefficients were considered as the ‘standard’
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values to which the DSMC transport coefficients were fitted by selectively

adjusting the VHS/VSS parameters using the Nelder-Mead Simplex Method.

The temperatures considered in this work ranged from 1000 K - 5000 K at

a pressure of 2300 Pa, and chemical equilibrium and non-equilibrium cases

were examined. These results were also compared to fits generated using the

collision integral fitting approach.

The transport coefficients generated from the best-fit VHS model pa-

rameters were found to be in relatively poor agreement with the SCEBD and

Gupta et al.-Yos values compared to the VSS model, regardless of the collision

pairing approach used. This underscores the importance of using the VSS

model for flows involving gas mixtures, as the scattering exponent α allows for

a consistent representation of both the viscosity and diffusion cross sections.

In cases where diffusion is not expected to dominate the flow and the use of

the VHS model is desired, the VHS model parameters can be calibrated to

give excellent agreement to the viscosity and translational thermal conductiv-

ities for this gas mixture. In this situation, quantities such as shear stress or

Fourier-type heat flux would be of interest. However, the VSS model should

be used for conditions in which species diffusion is important, such as flows

involving strong normal shocks or chemical reactions/reacting surfaces.

The best fit parameters generated from the transport coefficient fits

in a chemical equilibrium mixture were extended to examine the quality of

agreement in transport coefficients for three non-equilibrium cases. It was

found that the parameters obtained from the collision integral fits using the
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VSS collision-specific pairing approach provide best agreement to the SCEBD

and Gupta et al.-Yos coefficients for the mixtures examined (both equilibrium

and non-equilibrium compositions), compared to the transport coefficient fit-

ted parameters. The VSS collision-averaged fitted parameters obtained from

collision integral fits were shown in the equilibrium composition case to pro-

vide reasonable agreement (within 10%) to SCEBD and Gupta et al.-Yos, but

better results are obtained using the fitted parameters from the transport co-

efficient fits. Again, this is due to the fact that the transport coefficient fits

make use of the mixture composition to inform the fitting process.
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Chapter 5

Application to Hypersonic Boundary Layer

Flow Over Discrete Surface Roughness

5.1 Overview

In this chapter, the concepts of the hybrid framework and techniques

discussed in Chapters 2-4 are brought together and applied to model hyper-

sonic boundary layer flow over discrete surface roughness. In particular, the

hybrid approach is used to provide a detailed non-equilibrium solution in the

region surrounding the roughness as well as in the near wake region. The

flow conditions examined in this work are presented first, and the convergence

requirements of both the CFD and DSMC solvers are discussed for the cases

presented. The three-dimensional flowfield results are divided into two parts.

The asymmetric geometry configuration is presented first, and results from

low and high altitude conditions are examined and compared among the CFD

no-slip, slip and hybrid DSMC solutions. The symmetric geometry config-

uration is presented next, and results from the high altitude condition are

compared among the CFD no-slip, slip and hybrid DSMC solutions. This

chapter concludes with an assessment of the computational performance of

the hybrid DSMC and CFD solvers and a summary of the key findings from

these investigations.
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5.2 Hybrid and CFD Solutions

5.2.1 Flow Conditions and Roughness Geometries

The flow conditions that are used in this hybrid analysis are repre-

sentative of the hypersonic boundary layer flow conditions for an ISS return

trajectory of the shuttle Orbiter. The ISS descent trajectory (represented

by the green trajectory in Figure 5.1) indicates a maximum Mach number

of approximately M∞ = 28 early in the trajectory, and the freestream Mach

number has decreased to approximately M∞ = 13 at an altitude of 50 km.

The post-flight analysis from the STS-119 BLT flight experiment indicated

transition onset due to the protuberance at M∞ = 15 and an altitude of ap-

proximately 54 km. The protuberance in this experiment had a roughness

height of k = 6.35 × 10−3 m, which was approximately one-quarter of the

boundary layer thickness at transition. From CFD analysis, the molecular

mean free path at the boundary layer edge was O(10−5), and the Knudsen

number based on roughness height Knk was O(10−3).

Due to the considerable computational expense of a fully resolved hy-

brid solution for this particular trajectory point, the results presented in this

work examine two conditions at higher altitudes along the trajectory. The

first set of conditions examined correspond to a freestream Mach number of

M∞ = 20 at an altitude of approximately 60 km, which is referred to as the low

altitude case. The second set of conditions correspond to a freestream Mach

number of M∞ = 25 at an altitude of approximately 80 km (herein referred

to as the high altitude case). The location of these points on the trajectory
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State of the 
Science Final Remarks Hybrid DAC/DPLR 

Approach 
Current 
Results 

FUTURE WORK 
& TIMELINE 

Motivation for 
Studying RIT 

1	
  

STS-119 TRANSITION 
M∞= 15   ~54km alt. 

HYBRID (LOW ALTITUDE) 
M∞= 20   ~60km alt. 

HYBRID (HIGH ALTITUDE) 
M∞= 25   ~80km alt. 

Figure 5.1: ISS/lunar descent trajectories. The conditions examined in this
work correspond to freestream Mach numbers of M∞ = 20 (60 km low altitude
case) and M∞ = 25 (80 km high altitude case). Transition onset due to
the protuberance in the STS-119 flight experiment occurred at approximately
M∞ = 15.

relative to the STS-119 transition location are represented schematically in

Figure 5.1.

The protuberance in the STS-119 BLT flight experiments was posi-

tioned on the shuttle Orbiter belly at a location approximately 25 m down-

stream of the Orbiter nose and 6 m off of the centerline. This location was

used as the reference point to extract the boundary layer edge conditions

for the high and low altitude conditions presented here. The set-up of the
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STS-119 BL TRIP LOCATION (REFERENCE POINT) 

Figure 5.2: Shuttle Orbiter with reference point of STS-119 BLT boundary
layer trip location. Contours represent local wall temperature [K] for smooth
OML solution generated with DPLR (obtained from NASA Ames [64]).

three-dimensional flowfields examined in this work is a simple flat plate with a

discrete surface roughness element located at a fixed distance xk downstream

of the leading edge. The CFD solutions were generated first in multiple stages.

The boundary layer edge conditions pertaining to the 60 km and 80 km cases

were first obtained from full CFD flowfield solutions generated for a smooth

outer mold line (OML) of the shuttle Orbiter at the corresponding freestream

conditions (Figure 5.2). These solutions were computed with DPLR and were

provided by NASA Ames [64].

In the next step, a two-dimensional flat plate boundary layer solution

is generated using DPLR in which the boundary layer edge conditions are

118



T/T
e

y
/δ

T
(6

0
k
m

)

y
/δ

T
(8

0
k
m

)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

60km

80km

(a) Temperature profiles

u/u
e

y
/δ

u
(6

0
k
m

)

y
/δ

u
(8

0
k
m

)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

60km

80km

(b) Velocity profiles

λ
HS

/k

y
/δ

T
(6

0
k
m

)

y
/δ

T
(8

0
k
m

)

0.0E+00 1.0E­02 2.0E­02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

60km

80km

(c) Knk = λHS/k profiles

Figure 5.3: Two-dimensional flat plate boundary layer profiles generated from
DPLR, based on edge conditions at STS-119 reference point (see Figure 5.2) at
60 km and 80 km. Profiles show (a) translational temperature, (b) streamwise
velocity and (c) Knudsen number based on roughness height k. Circle symbols
on each profile represent height of discrete roughness examined for each case.

specified according to the OML solutions at the STS-119 reference point. The

boundary layer edge conditions corresponding to the low and high altitude

cases examined are tabulated in Table E.1, and solutions are provided in Figure

5.3. The wall temperature in these cases was prescribed as Tw = 1200 K, which

is equivalent to the radiative equilibrium wall temperature from the STS-119

solution. All profiles in Figures 5.3(a)-(c) were acquired at the location of the

roughness center xk in an undisturbed flat plate boundary layer. The profiles

are provided up to y = 0.05 m (where the wall is located at y = 0 m), which

corresponds to the thermal boundary layer thickness of the high altitude case.

Profiles of the translational temperature for the low altitude (60 km)

and high altitude (80 km) cases are presented in Figure 5.3(a). The pro-

files show the normalized translational temperature through the boundary
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Table 5.1: Boundary layer edge conditions

Low altitude (60km) High altitude (80km)

Me 2.96 3.0
pe 2400 Pa 900 Pa
ue 4400 m/s 5000 m/s
Te 4500 K 5100 K
λe 4.2× 10−5 1.3× 10−4

Rex 9.4× 104 2.9× 104

Rek 3.42× 102 1.80× 102

χN2 6.072× 10−1 4.5838× 10−1

χO2 2.0× 10−4 2.0× 10−5

χNO 4.6× 10−3 1.6× 10−3

χN 4.8× 10−2 2.4× 10−1

χO 3.4× 10−1 3.0× 10−1

layer, and are plotted as a function of wall-normal distance normalized by the

corresponding thermal boundary layer thickness. In the case of the thermal

boundary layer, the temperature slightly overshoots the edge value, and so the

boundary layer thickness δT is taken as the first wall-normal location where

Ttr = 1.01Ttr,∞ approaching the wall. The thermal boundary layer thickness

in the low altitude case is approximately 60% of the high altitude case at the

same x-location. Profiles of streamwise velocity normalized by the edge veloc-

ity are given in Figure 5.3(b). Regarding Figure 5.3(b), the boundary layer

thickness based on velocity δu is taken as the location where u = 0.99u∞ as

usual. The boundary layer thicknesses δu at both low and high altitudes are

approximately 20% less than the thermal boundary layer thickness. In Figure

5.3(c), the molecular mean free path based on the hard sphere approxima-

tion is plotted through the boundary layer and is normalized by the roughness
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Figure 5.4: Characteristic lengths of asymmetric geometry and CFD mesh.
Geometry is shown from end view (upper left) and side view (upper right)
perspectives. The mesh is extruded in the wall-normal direction from the
geometry surface.

height k for the respective cases. This quantity is a local Knudsen number

which, for these undisturbed boundary layer flows, indicates the regime (rar-

efied/continuum) of the flow approaching the discrete surface roughness, as

discussed in Chapter 1.

The height of the discrete surface roughness examined at each altitude

are prescribed as

k = 0.25δT . (5.1)

These values are indicated by the filled circles at y/δT = 0.25 on each profile

in Figures 5.3(a),(c), or equivalently y/δu ≈ 0.30 in Figure 5.3(b).
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In the final CFD step, the profiles from the two-dimensional flat plate

boundary layer solutions are applied as inflow boundary conditions for the

three-dimensional CFD solutions. The quantities of pressure, temperatures

(translational and internal), velocities and species mass fractions are interpo-

lated onto the boundaries, and DPLR is used to generate the CFD flowfield

solution on a detailed volume mesh. The structured volume mesh for the dis-

crete asymmetric roughness geometries is constructed as a rectangular com-

putational domain (Figure 5.4) which includes the discrete surface roughness

geometry on the solid flat plate wall (bottom), boundary layer inflow profiles

specified by a pointwise boundary condition (front and top), supersonic exit

condition (back) and zone boundary conditions (allowing for ouflow) on the

sides of the domain [87]. The roughness geometry is an elongated hump of

height k, and is shown from sideview and endview perspectives in Figure 5.4.

The geometry is characterized by height k, lengths `1, `2, radius of curvature

r, and is oriented at an angle of 45◦ to the oncoming flow. The flat plate

and surface roughness are specified as viscous, isothermal walls with either a

slip- or no-slip condition enforced at the wall. In both the high altitude and

low altitude cases, the computational domain is 300k in length and 33k in the

spanwise direction.

The roughness center is located at approximately xk = 50k from the

front of the computational domain. The roughness lies at the spanwise center

of the domain (zk = 0 m) and occupies one-third of the total span. The heights

of the computational domains are 40k and 72k for the high and low altitude
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cases, respectively. These heights were specified according to the location of

the oblique shock generated from the flat plate leading edge, such that the

oblique shock is not included in the three-dimensional flowfield solutions. The

characteristic geometric length scales of the roughness and the computational

domain for the asymmetric roughness are outlined in Table 5.2. These scales

(with the exception of the domain height, which are listed separately) apply to

both the high and low altitude cases, and are presented based on the roughness

heights k.

Table 5.2: Computational length scales (Geometry and CFD/hybrid domains)

Asymmetric (k = 0.012 m, 0.007 m) Symmetric (k = 0.012 m)

`1 8k 4k
`2 k 4k
b 5.6k 5.6k
r 0.72k 0.06k

CFD
Lx 300k —
Ly 40k, 72k 40k
Lz 33k —
xk 50k —
Ld — 52k
Rk — 26k

Hybrid
Lx 26k, 25k 26k
Ly 4k, 6k 4k
Lz 16k 8k (half domain)
xk 9k 9k

The structured volume mesh for the symmetric roughness geometries

is constructed as an extruded ‘lilypad’ computational domain (Figure 5.5)
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Figure 5.5: Characteristic lengths of symmetric geometry and CFD mesh.
Geometry is shown from front view (upper left) and planview (middle left)
perspectives. The mesh is extruded outward from the geometry surface.

which includes the discrete surface roughness geometry on the solid flat wall

(bottom), boundary layer inflow profiles specified by a pointwise boundary

condition on the third and fourth quadrant faces (these are removed in the fig-

ure to show the roughness), supersonic exit condition on the top face and first

and second quadrant faces (back faces in figure) and zone boundary conditions

for the shared faces on the interior domain [87].

The roughness geometry is a ‘pizzabox’ shape with height k, and is
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shown from frontview and planview perspectives in Figure 5.5. The geometry

is characterized by height k, lengths `1, `2, radius of curvature r, and is oriented

with the diagonals parallel and perpendicular to the oncoming flow. The flat

wall and surface roughness are again specified as viscous, isothermal walls with

either a slip- or no-slip condition enforced at the wall. The computational

domain has a diameter of Ld = 52k and height Ly = 40k. The roughness is

located in the center of the lilypad, with the front of the computational domain

at a radial distance of Rk = 26k from the roughness. The characteristic

geometric length scales of the roughness and the computational domain for

the symmetric roughness are outlined in Table 5.2. These scales are presented

based on the roughness height k.

After the CFD solutions are obtained, the flowfield quantities are in-

terpolated onto the computational boundaries of the hybrid domain, and the

DSMC solver is used to model the detailed, non-equilibrium flowfield in the

region surrounding the roughness and in the near wake. The solid surface

defining the flat plate and roughness geometry in the CFD solution is trans-

formed into an unstructured grid using the same surface node points. This is

to ensure that the same geometry is represented in both flow solvers.

The computational boundary conditions and boundary locations in

terms of the breakdown parameters presented in Chapter 3 are presented in

detail later on in Section 5.3, but an overview of the domain length scales

is presented here. A rectangular computational domain is used for both the

asymmetric and symmetric geometries. The bottom of the domain consists of
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the solid surface with the roughness, and the side and top walls are specified as

pointwise inflow boundaries. The solutions for the asymmetric geometry cases

must be solved on full domains, and the length scales of the computational

domains are provided in Table 5.2. In each case, the roughness is positioned at

the spanwise center of the domain, and the roughness center is approximately

xk = 9k from the front of the computational domain. The flowfield for the

symmetric geometry is obtained through use of a symmetry plane along the

centerline of the roughness, along which a specular wall boundary is specified.

The length scales for this case are also reported in Table 5.2.

5.2.2 Convergence Requirements

A detailed comparison between the CFD and hybrid flowfield solutions,

particularly surface heat flux and gradient-based flow quantities, requires fully

resolved flowfield and surface grids. The CFD solutions were solved on com-

putational domains with grid spacing of O(10−6) m at the wall, and grid con-

vergence studies were conducted to ensure that the solutions presented here

are grid-independent. The boundary layer contained approximately 40 − 50

grid points, and grid stretching was applied in the wall-normal direction. Grid

points in the streamwise and spanwise directions were clustered in the regions

of high gradients surrounding the roughness and in the wake, to maintain cell

Reynolds number of Recell ≤ 1. This quantity is plotted in Figure 5.6(a) as

a function of streamwise distance for the asymmetric geometries. The figure

shows the cell Reynolds number at the surface of the roughness for both the
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high and low altitude cases, and this quantity remains well below the desired

limit. It should be noted that the cell Reynolds number varies over the rough-

ness, but the values in Figure 5.6(a) represent the maximum values in each

case.

The edges and corners of the pizzabox geometry are defined by a very

small radius of curvature (Table 5.2), and grid points were clustered on these

features to resolve the high flowfield gradients and surface heat flux in these

regions. The top and side faces of the geometry are defined by (128 × 128)

and (180× 128) grid points respectively, and radius of curvature on the edges

were represented by 22 grid points. This resulted in a local cell Reynolds

number of Recell = 0.3 on the curved features, and Recell = 0.5 on the top of

the geometry (Figure 5.6(b)). Regions of the flat surfaces on the windward

side of the geometry approach values of Recell = 1.0, but these regions are

not in the vicinity of the peak surface heating, which occurs at the top corner

of the roughness. The cell Reynolds number on the surface surrounding the

roughness remains well below a value of unity. It should also be noted that

all of these results are solved as steady-state solutions, and the solutions were

considered converged when the L2 norm residual based on density fell below

10−6.

Fully resolved DSMC solutions require convergence in the computa-

tional cell size, the number of simulated particles, as well as the computational

time step used to advance the solution. In order to resolve gradients within

the flowfield, the computational cells should be less than or equal to the local
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Figure 5.6: Cell Reynolds numbers determined from near-wall cells for (a)
asymmetric roughness and (b) symmetric roughness cases. Profiles in (a) are
taken through the maximum cell Reynolds number location.

molecular mean free path, such that δcell ≤ λ. Within the DAC solver, this is

achieved by specifying that the Level-II cells achieve mean-free-path resolution

throughout the computational domain. The ratio of local mean free path to

the cell size (where δcell represents the average dimension of a Level-II cell) is

shown in Figure 5.7(a) as a function of streamwise distance for each of the cases

examined. The values were extracted from the computational cells nearest the

solid wall where gradients are largest, and were taken at the spanwise location

of peak surface heating on each of the geometries. The computational cells

used in the DSMC simulations achieve mean free path resolution upstream

and downstream of the roughness, and nearly resolve the mean free path over

the roughness.

Since the macroscopic flowfield quantities in DSMC are determined by
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sampling the particles within each cell, it is important that each cell contains a

sufficient number of simulated particles for a statistically significant measure

of flow quantities. The surface heat flux predicted by DAC was found to

be especially sensitive to the number of particles per cell specified in near

wall cells. DAC populates each cell with ten simulation particles everywhere

in the domain. However, this results in a heat flux that overpredicts the

CFD (DPLR) flat plate boundary layer flow value by approximately 10%, for

the conditions considered here. The agreement in wall heating was found to

improve by increasing the number of particles per cell in the near-wall cells,

while specifying ten particles per cell in the flowfield cells away from the wall.

Figure 5.7(b) shows the total wall heat flux per unit area as a function of

iteration in time for 30, 60 and 120 particles per near-wall cell. The CFD

(DPLR) value is indicated by the black line. In the inset figure, the solution

has reached steady state, and time-averaging is started at iteration 50, 000 for

each of the cases. Using 30 particles per cell shows very good agreement with

the CFD heat flux, with a difference of only 1.4% in the predicted values.

Increasing to 60 particles per cell reduces the difference in wall heating to less

than 0.2%. Using 30 particles per cell provides reasonable agreement in the flat

plate heat flux values while allowing the simulation to remain computationally

tractable, so this criterion is adopted in the hybrid simulations presented in

this work. A summary of the computational cost of the three-dimensional

CFD/hybrid solutions are provided in Appendix E.
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Figure 5.7: DSMC convergence criteria in (a) molecular mean free path reso-
lution and (b) number of particles per cell (near-wall).

5.3 3D Flowfield Solutions: Flow Features, Breakdown
Surfaces and Hybrid Interface Location

The concepts introduced in Chapter 3 are now applied to analyze the

breakdown of the CFD flowfield solution in the region surrounding the rough-

ness geometry. Before doing this, the general flow features generated by the

asymmetric versus symmetric roughness geometries are examined in detail.

The discussion in the first portion of this section is limited to the high altitude

cases, in which flows from both the asymmetric and symmetric roughness

geometries are modeled. The hybrid interface locations and corresponding

breakdown parameters are examined for the three cases outlined in this work.

The flow features of the asymmetric and symmetric geometries are high-

lighted in Figures 5.8-5.11. The disturbance field generated by boundary layer

flow over the asymmetric roughness is visualized by the streamtrace ‘ribbons’
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Figure 5.8: Disturbance flowfield (visualized by streamtrace groups I − IV
colored by wall-normal height) generated by asymmetric roughness. Black
mesh isosurfaces (on roughness and in wake) indicate regions of strong non-
equilibrium (B > 0.15). Roughness (shown in light gray) is centered over
x = 1.91 m. Enlarged inset figure shows details of disturbance field from an
end view perspective near the leading edge (shown schematically by viewing
‘window’ with arrows in main figure).
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shown in Figure 5.8 and magnified in the enlarged inset figure. Note that the

inset figure shows an end view perspective of the leading edge according to

the viewing ‘window’ with arrows in the main figure, and so the general flow

direction in the inset figure is from right to left. The streamtraces represent

the local velocity vector, and are colored according to wall-normal distance

where blue indicates a position at the wall, red indicates a position at the

height of the roughness. Breakdown surfaces are shown in the black mesh

isocontours; these surfaces highlights regions where the breakdown parame-

ters introduced in Chapter 3 exceed a value of 1.5. Four distinct groups of

streamtraces (labeled I-IV) are shown for clarity of discussion.

Flow approaching the leading edge of the roughness near the wall (Fig-

ure 5.8, Group I) is immediately swept towards the centerline of the roughness

in the wake, and up the backside of the roughness in a recirculation region

where it is lifted nearly one roughness height. This flow continues downstream

in the wake with a slight rotation in a lifting vortex (shown by the red stream-

traces in the wake originating from Group (I)), which will be quantified later

in this chapter using the Q-criterion. Flow following this path exhibits rela-

tively strong non-equilibrium immediately downstream of the leading edge, as

indicated by the breakdown surface.

The second group of streamtraces (Group II, shown only in enlarged im-

age of Figure 5.8) highlights flow that passes over the shoulder of the roughness.

This flow is also swept immediately towards the centerline of the roughness,

and comprises the central portion of the recirculation region, making a cou-
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ple of rotations behind the roughness before passing downstream in the wake.

The third group (Group III, again shown only in enlarged figure) represents

flow that passes over the crest of the asymmetric roughness. Flow from both

Group II and Group III exhibits strong non-equilibrium as it passes over the

shoulder and crest, as gradients become very large in these regions. In fact,

breakdown of the Navier-Stokes solution according to the breakdown criterion

discussed in Chapter 3 occurs over the majority of the roughness geometry, as

indicated by the breakdown surface.

The fourth group of streamtraces (Figure 5.8 Group IV) highlights flow

that originates upstream of the roughness at a height in the boundary layer

that is approximately one-third of the roughness height. This flow impinges

on the windward side of the roughness and is swept downward toward the

wall, away from the roughness centerline. As it pass over the trailing edge

of the roughness, it is swept toward the roughness centerline. Some of the

streamtraces are swept into the recirculation region and are lifted upward in

the wake. A very small region of non-equilibrium is found downstream of the

trailing edge, but the non-equilibrium induced by the flow over the leading

edge is more prevalent.

The breakdown surfaces shown in Figure 5.8 are presented again in

Figure 5.9, with a mapping of the surface heating. A detailed, quantitative

comparison of the predicted surface heating by the CFD and hybrid solvers

will be presented later in the chapter, but here it is noted that streaks of

increased heating (relative to the comparatively undisturbed flow in front of
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Figure 5.9: Surface heating in regions surrounding asymmetric roughness.
Black mesh isosurfaces (on roughness and in wake) indicate regions of strong
non-equilibrium (B > 0.15). Roughness is centered over x = 1.91 m.

the roughness) are found downstream of the leading and trailing edges of the

roughness. These streaks coincide with near-wall streamwise-oriented vortices,

which generate local regions of high gradients at the wall. The highest heating

indicated by the red contour levels is found on the windward side of the rough-

ness near the leading edge, and each of these regions correspond to breakdown

of the Navier-Stokes solution.

The disturbance field generated by boundary layer flow over the sym-

metric roughness is presented in Figure 5.10 and magnified in the enlarged in-

set figure. This flowfield is also visualized by the streamtrace ‘ribbons’ which

are colored according to wall-normal distance, where blue again indicates a

position at the wall, red indicates a position at the height of the roughness.
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Breakdown surfaces are shown in the black mesh isocontours where the break-

down parameters exceed a value of 1.5. Three distinct groups of streamtraces

(labeled I-III) are shown for this roughness geometry.

The first and third group of streamtraces (Groups I and III, with Group

I shown in enlarged image of Figure 5.10) represent flow that originates up-

stream of the roughness from a wall-normal location equivalent to one-third

of the roughness height. This flow impinges on the windward side of the

roughness, and is swept downward toward the wall, away from the roughness

centerline. As the flow passes the corner of the roughness, it is swept back to-

ward the roughness centerline, and becomes entrained in a recirculation region.

The recirculating flow impinges the leeward side of the roughness and is lifted

nearly one roughness height as it is pushed away from the roughness centerline.

The flow is then turned downstream into the wake, forming a counter-rotating

vortex pair that is symmetric across the roughness centerline. The flow high-

lighted by each of these groups exhibits strong nonequilibrium near the flat

wall on either side of the roughness. This non-equilibrium is found in portions

of the recirculation region near the wall, and persists downstream in the wake.

The second group (Group II, shown only in enlarged image of Figure

5.10) represents flow that passes over the top of the symmetric roughness.

Flow from this group exhibits strong non-equilibrium as it passes over the

roughness, which can be attributed to the large gradients that form on the top

of the roughness. It is interesting to note that in the case of the symmetric

roughness, the breakdown surface is mostly restricted to the top surface of
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the roughness, whereas the asymmetric roughness surface was almost entirely

dominated by non-equilibrium flow.

The breakdown surfaces shown in Figure 5.10 are presented again in

Figure 5.11, with a mapping of the surface heating. In this roughness geom-

etry configuration, the streaks of increased heating (relative to the compara-

tively undisturbed flow in front of the roughness) are symmetric in the wake

of the roughness as expected. These streaks again coincide with near-wall

streamwise-oriented vortices, which generate local regions of high gradients at

the wall. The highest heating indicated by the red contour levels is found on

the windward side of the roughness near the leading edge corner and along

the top edges. These regions correspond to breakdown of the Navier-Stokes

solution, as indicated by the overlapping breakdown surface.

In both the asymmetric and symmetric geometry configurations, it is

found that the breakdown of the Navier-Stokes equations occurs both on and

downstream of the roughness. Although the formation of a weak bow shock

just upstream of the roughness geometries is apparent in both cases (discussed

later in Sections 5.4.1 and 5.5.1), the flow gradients through the weak shock

remain sufficiently small that the flow may still be adequately represented by

the CFD solution. It is emphasized that the surface roughness is one-quarter

of the boundary layer thickness, and the sonic line in an undisturbed bound-

ary layer is located at distance above the wall equivalent to one-half of the

roughness height. A taller roughness would certainly generate a stronger bow

shock, and regions of non-equilibrium flow would possibly be found upstream
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Figure 5.10: Disturbance flowfield (visualized by streamtrace groups I − III
colored by wall-normal height) generated by asymmetric roughness. Black
mesh isosurfaces (on roughness and in wake) indicate regions of strong non-
equilibrium (B > 0.15). Roughness (shown in light gray) is centered over
x = 1.91 m. Enlarged inset figure shows details of disturbance field from an
end view perspective near the leading edge (shown schematically by viewing
‘window’ with arrows in main figure).
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Figure 5.11: Surface heating in regions surrounding symmetric roughness.
Black mesh isosurfaces (on roughness and in wake) indicate regions of strong
non-equilibrium (B > 0.15). Roughness is centered over x = 1.91 m.

of the roughness due to the strong shock formation.

The hybrid interface boundaries used in this work may now be examined

in terms of the breakdown analysis presented in Chapter 3. The breakdown

criterion adopted for this work follows from the work of Garcia and Alder [23],

in which the DSMC particles are generated at an interface where B ≤ 0.1.

For the CFD flowfields presented in Figures 5.8-5.11, the breakdown surface

in the wake extends hundreds of roughness heights downstream. To keep the

DSMC solutions computationally tractable, the downstream interface in this

work cuts across the breakdown surface in the wake. This does not appear

to have an adverse impact on the flowfield solution further upstream in the

hybrid computational domain, since the bulk boundary layer flow is in the
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general streamwise direction out of the downstream interface.

The asymmetric roughness geometry from the high altitude case is out-

lined here, but the same discussion applies to the symmetric geometry and

low altitude asymmetric geometry cases presented in this work. The hybrid

domain is shown schematically in Figure 5.12. Recall that since this is an

asymmetric geometry, the entire flowfield is modeled in the hybrid solver. The

computational domain is comprised of five pointwise inflow boundaries (Fig-

ure 5.12), whose properties are determined from the CFD three-dimensional

flowfield solution. The local number density contours are shown on each of

the inflow boundaries, which include the front and back interfaces (faces of

constant x-value), left and right interfaces (faces of constant z-value) and the

top interface (face of maximum constant y-value). The bottom boundary is

a solid surface consisting of the flat plate and the discrete surface roughness,

shown as the shaded gray surface. The bottom surface is prescribed a uniform

temperature of Tw = 1200 K, and DSMC particles colliding with the surface

are reflected assuming full thermal accommodation. The interpolated CFD

boundary condition includes the weak bow shock and expansion regions on

the top interface, as well as the flow features in the wake.

Profiles of the breakdown parameters presented in Chapter 3 are shown

for the front, back and top boundary faces of Figure 5.12 in Figure 5.13(a,b).

Only breakdown parameters which exceed values of B ≥ 10−2 on any of the

hybrid interfaces are shown. In this example case, the diffusion breakdown

parameters were all less than O(10−3) and are not presented, as well as several
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Figure 5.12: Hybrid domain interface boundaries for the asymmetric geometry
(high altitude case). The domain is comprised of five pointwise inflow bound-
aries (front, back, left, right and top faces) and a solid bottom wall comprising
a flat plate with the roughness.
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Figure 5.13: Breakdown parameter profiles taken from hybrid interface bound-
aries of asymmetric roughness geometry (Figure 5.12). Only breakdown pa-
rameters which exceed B ≥ 10−2 are shown. Profiles are extracted from front
(solid lines), back (dashed lines) and top (dash-dotted lines) interfaces shown
in Figure 5.12.
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components of the shear stress tensor and heat flux vectors. The profiles

are extracted through the extremum of each breakdown parameter along the

respective boundary interface. The solid lines in Figure 5.13(a,b) indicate

profiles extracted from the front interface, dashed lines are profiles from the

back interface, and dash-dotted lines are profiles from the top face. The front

and back profiles are presented as a function of wall-normal distance y, while

the top profiles are a function of streamwise distance x. From these profiles

it is observed that the local flow gradients along the top interface due to the

compression (bow shock) and expansion regions are relatively minor, as the

magnitude of the parameters all remain within the breakdown criterion.

On the front interface, the values of q̃rot,y and q̃vib,y approach a value

of −0.05 at the wall, while the parameter qtr,y slightly exceeds this value.

The breakdown criterion is exceeded on the back interface by the parameter

qtr,y, and the values from the internal heat fluxes approach −0.1. As discussed

earlier, these values are exceeded due to the large wall-normal gradients down-

stream of the roughness leading edge (indicated by the breakdown surface in

Figure 5.8). By examining these breakdown parameter profiles, it is found that

the breakdown of the Navier-Stokes equations in these regions is due to the

wall-normal gradients in temperature, as the shear stress parameters remain

relatively small (Figure 5.13(a)).

As a further examination of these non-equilibrium flowfields, a detailed

comparison among the CFD (no-slip and slip wall conditions) and hybrid solu-

tions is presented in the following sections. While comparisons could be made
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among an overwhelming number of flow quantities, the results presented in

these sections focus on the velocity field (and corresponding vortex structures

determined from the Q-criterion[42]), translational/vibrational thermal non-

equilibrium, and local surface heating. The comparisons among the CFD and

hybrid solutions are restricted (spatially) to within the boundaries of the cor-

responding hybrid domain.

5.4 Asymmetric Geometry Configuration

5.4.1 Flowfield comparisons at 80 km

The first set of results presents a comparison of the CFD and hybrid

solutions for the asymmetric roughness geometry at 80 km. The flowfield

results from the CFD no-slip and slip wall conditions are nearly indistinguish-

able, so in the following discussion, only results from the analysis of the CFD

slip wall and hybrid solutions are presented. Comparisons of the velocity field

are presented in Figure 5.14 for the wake flow at a location approximately

10k downstream of the roughness center. The figures are oriented looking

downstream in the +x direction. The streamwise velocity contours are shown

in Figure 5.14(a). The field contours represent the hybrid solution, and the

CFD values are shown by the contour lines. In both solutions, the wake flow

produced by the roughness indicates high-speed flow which penetrates toward

the wall behind the leading edge (z ≈ −0.04 m), and to a lesser extent in

the flow behind the trailing edge (z ≈ 0.05 m). In between these regions, low

speed flow is pushed upward away from the wall forming a streak of low speed

142



(a) streamwise velocity contours (x=2.04m) (b) vortex pairs from Q-criterion
(x=2.04m)

Figure 5.14: Flow features in wake of asymmetric roughness (80 km altitude)
at x = 2.04 m. (a) Streamwise velocity contours from hybrid solution (contour
flood) and CFD slip-wall solution (contour lines). (b) Vortex pairs determined
from Q-criterion. Vortices are shown as isocontours of Q = 1.5× 106 for CFD
(black) and Q = 6.0× 106 for hybrid (red) solutions, and the roughness (gray)
is shown for reference. Note that the positions of vortex cores are similar, but
the hybrid vorticity (relative to the strain rate) is stronger.

flow, centered over z = 0.04 m. The CFD solution (line contours) predicts a

slightly wider low speed streak compared to the hybrid solution.

The high- and low-speed streaks that are generated by the roughness

correspond to a pair of counter-rotating vortices that originate from the leading

and trailing edges of the roughness. These vortex pairs are visualized by

isocontours of Q in Figure 5.14(b), which picks out flow regions where the

norm of the vorticity tensor is greater than the norm of the rate of strain

tensor [35]. The CFD vortex pairs are shown by the black isocontours, and

the hybrid vortices are shown in red. The vorticity strength increases on the

region inside of the vortex rings formed by the iscontours, and reaches a peak

at the center of the vortex core. The sense of rotation of these vortices is

indicated by the sets of arrows, and the roughness geometry is shown in gray

at this downstream location for reference. Due to statistical noise in the DSMC
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(a) translational/vibrational thermal non-
equilibrium contours over leading edge
(z=-0.038m)

(b) regions of translational/vibrational
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in wake (x=2.04m)

Figure 5.15: Translational/vibrational thermal non-equilibrium in flow sur-
rounding asymmetric roughness at 80 km. (a) Thermal non-equilibrium con-
tours from hybrid solution (top) and CFD slip-wall solution (bottom) taken
at the roughness leading edge z = −0.038 m. Contours indicate the difference
between translational and vibrational temperatures, where TNEQ = Ttr − Tvib.
(b) Isocontours of thermal non-equilibrium in the wake, taken at a location
10k downstream of roughness. Colored isocontours (following levels in (a))
represent hybrid solution, black represent corresponding CFD solution.

solution, there are additional isolated regions of vorticity that are seen in the

domain, particularly near the wall and boundaries of the hybrid domain.

The analysis of the CFD and hybrid solutions using the Q-criterion in-

dicates that the vortices generated by the roughness leading edge are stronger

compared to the trailing edge vortices due to the asymmetry of the geometry,

although the trailing edge vortices become difficult to detect in the DSMC

solution. The vorticity in the wake predicted by the hybrid solution is ob-

served to be slightly stronger compared to the vorticity predicted by the CFD

solution, as indicated by the relative strength of the vortex pairs. It is also

interesting to note that the span of the counter-clockwise (CCW) leading edge

vortex in the hybrid solution is greater than the corresponding CCW vortex

144



in the CFD solution, i.e., both the strength and size of this vortex are greater

in the hybrid solution. As will be discussed later, this is found to have a

measurable impact on the surface heating in the wake of the roughness.

The translational/vibrational thermal non-equilibrium in the flow pre-

dicted by the hybrid and CFD slip wall solutions are presented next in Figure

5.15(a) and (b). The contours in Figure 5.15(a) show the difference in [K] in

the translational and vibrational temperatures in the flow, where a positive

temperature difference indicates areas of the flow where Ttr > Tvib. The hybrid

solution is shown on top, and the CFD solution is mirrored on the bottom for

comparison. This slice is taken at a spanwise location at the leading edge of

the roughness, (z = −0.038 m). Toward the front of the domains, the CFD

and hybrid solutions are in excellent agreement. Just upstream of the rough-

ness, a bow shock forms, and the hybrid solution predicts higher vibrational

non-equilibrium in this region compared to the CFD solution. In the expan-

sion region that forms aft of the roughness (indicated by the blue contours),

the CFD solution predicts slightly greater vibrational non-equilibrium. In the

wake region, the flow is processed by another compression region/shear layer

as the flow passes over the top of the roughness and is brought parallel to the

wall. The vibrational non-equilibrium in the hybrid solution is again greater

than the CFD solution in this region.

A comparison of the thermal non-equilibrium in the wake at a loca-

tion 10k downstream of the roughness center is provided in Figure 5.15 (b).

The colored isocontours represent the hybrid solution, and follow the contour
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levels in Figure 5.15 (a). The corresponding CFD isocontours are shown in

black. The hybrid solution shows a greater spanwise extent of thermal non-

equilibrium near the wall (orange contour) compared to the CFD solution.

It should be emphasized that the extent of thermal non-equilibrium found in

this case is at most TNEQ = 700 K, which is approximately 20% of the gas

temperature within the boundary layer. The differences between the CFD

and hybrid solutions in terms of predicted thermal non-equilibrium are on

the order of 5%, and so the effects of thermal non-equilibrium on the overall

flowfields are relatively subtle.

5.4.2 Local surface heating at 80 km

The surface heat flux predicted by the CFD and hybrid solutions are

presented in Figure 5.16(a)-(c). The flow in these figures is in the general x-

direction (bottom to top), and the contours represent the local surface heating

on the roughness and in the wake. The heating on the flat surface upstream of

the roughness (referred to as the ‘baseline’ surface heating) was approximately

Q0 = 9.1× 104 [W/m2]. The windward side of the roughness experiences the

highest surface heating, particularly the leading edge region, and the heating

drops off gradually along the crest of the roughness toward the trailing edge.

The CFD contours indicate that the presence of the roughness has a more

pronounced impact on the surface heating upstream of the roughness, relative

to the hybrid solution. The surface heating in the wake of the roughness is

qualitatively similar among the CFD and hybrid solutions. All of the solutions
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(a) CFD no-slip wall (b) CFD slip wall (c) hybrid CFD/DSMC

Figure 5.16: Surface heating contours generated by asymmetric roughness at
80 km from (a) CFD no-slip wall (b) CFD slip wall and (c) hybrid solutions.
General flow direction is from bottom to top.

predict increased heating in the wake due to the leading edge vortex, while

the heating downstream of the trailing edge is relatively weak. The hybrid

solution, however, indicates a wider heating footprint due to the leading edge

vortex.

To quantify these differences, the total surface heating is extracted at

several streamwise locations from the CFD and hybrid solutions, both over

the roughness and in the wake, as indicated schematically in Figure 5.17. In

particular, the spanwise surface heating profiles are compared at locations of

peak heating on the roughness, the center of the roughness, the peak heating

in the wake and at a location 10k downstream of the roughness center (Figure

5.17, red, orange, yellow and purple profiles).
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Figure 5.17: Spanwise profiles of surface heating acquired at various stream-
wise locations for asymmetric roughness. Profiles highlight peak heating on
roughness (first spanwise profile in red) as well as vortex heating in wake in
the profiles downstream of the roughness (shown schematically in gray).

The corresponding spanwise profiles are presented in Figure 5.18 (a)-

(d) (note that the yellow profile from Figure 5.17 is shown here in black).

CFD no-slip surface heating is represented by the solid line, the slip surface

heating is shown by the dashed line, and the hybrid solution is shown as the

dash-dotted line. The first set of profiles (Figure 5.18(a)) are extracted at the

streamwise location of peak surface heating predicted by the hybrid solution.

Note that the predicted magnitude and location of peak heating varies among

the solutions, and peak roughness and vortex heating values corresponding to

each solution are presented in Table 5.3. At this location, the spanwise location

of the local peak heating is nearly identical among the three solutions. Towards

the centerline of the roughness (at z = 0 m), the surface heating reaches a
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local minimum, which corresponds to the region immediately upstream of

the roughness. The CFD solutions predict relatively lower heating on the flat

surface surrounding the roughness. This corresponds to the earlier observation

that the CFD solution predicts a more pronounced impact of the disturbance

field generated by the roughness on the upstream surface heating. Note that at

the very edges of these profiles (indicating the edge of the hybrid domain), the

hybrid solution converges to the CFD solution which, recalling the discussion

of Chapter 3, is used to specify the hybrid boundary condition.

The spanwise surface heating profiles taken at the center of the rough-

ness are shown in Figure 5.18(b). The spanwise location of the local maximum

in the surface heating profiles is nearly identical among the solutions, and the

maximum heating occurs just to right of the roughness centerline at z = 0 m.

This indicates that the streak of maximum heating along the top of the rough-

ness predicted by the solutions is located forward of the crest on the windward

side. The profile to the left of the centerline (−z direction) indicates a local

minimum, corresponding to the recirculation region discussed in Section 5.3,

and a local maximum corresponding to the leading edge vortex.

The peak heating caused by this leading edge vortex is shown in the pro-

file of Figure 5.18(c), where the vortex heating is centered over z = −0.04 m.

Again, this location corresponds to the peak vortex heating predicted by the

hybrid solution. It is interesting to note that the heating profiles predicted

by the CFD no-slip solution and hybrid solution are very similar within this

region. In fact, the peak vortex heating from the CFD no-slip solution occurs
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slightly farther downstream, but is within 2% of the value predicted by DSMC

(Table 5.3, highlighted in red), while the CFD slip solution is in better agree-

ment to the DSMC peak heating on the roughness (Table 5.3, highlighted in

blue). The heating profiles at this streamwise location show a second local

maximum near z = 0.05 m. This corresponds to the heating over the trailing

edge of the roughness.

The final heating profiles are acquired at a location 10k downstream of

the roughness center (Figure 5.18(d)). The maximum in the heating profiles

is due to the leading edge vortex, where the CFD and hybrid solutions predict

nearly the same magnitude of surface heating. Towards the centerline, the

hybrid solution indicates comparatively high heating in the wake, which is

evident in the surface contours from Figure 5.16. The heating downstream

of the trailing edge vortex (centered over z = 0.05 m is more pronounced in

the CFD solutions, while the trailing edge streak in the hybrid solution is

somewhat masked by the surrounding surface heating in the wake.

The results obtained from this analysis are quantified in Table 5.3. The

first group of data indicate the peak heating on the roughness (referred to as

‘Roughness Peak’) and downstream of the leading edge due to the vortex heat-

ing (referred to as ‘Vortex Peak (LE)’). The peak heating values are reported

for each solution method (CFD no-slip/slip and hybrid) and are reported in

units of [W/m2]. The relative difference between the CFD slip and no-slip peak

heating values (roughness and vortex) are also reported in parentheses behind

the CFD slip absolute surface heating value. The CFD slip wall condition
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Figure 5.18: Spanwise profiles of surface heating taken at various streamwise
locations for asymmetric roughness at 80 km, generated from CFD (no-slip
and slip wall) and hybrid solutions. Profiles highlight (a) peak heating on
roughness, (b) heating profile at roughness center, (c) peak vortex heating in
wake and (d) heating profile in wake. Profile colors correspond to schematic
of Figure 5.17 (yellow is replaced by black).
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consistently predicts lower surface heating, both in the peak heating regions

(first data group) and at the streamwise locations of the heating profiles shown

in the lower portion of the table.

The relative differences between the CFD no-slip and slip peak heating

values (roughness and vortex) are reported in parentheses (respectively) be-

hind the hybrid absolute surface heating value. It is observed that the CFD

slip solution is in better agreement with the peak roughness heating predicted

by the hybrid solution, but the CFD no-slip solution provides a closer pre-

diction in heating due to the leading edge vortex. The peak heating of the

trailing edge vortex is not reported due to the limited downstream distance of

the hybrid solution, but the local heating value due to the trailing edge vortex

is reported in Table 5.3 at the location 10k downstream of the roughness.

5.4.3 Flowfield comparisons at 60 km

The next set of results presents a comparison of the CFD and hybrid so-

lutions for the asymmetric roughness geometry at 60 km. Recall from Section

5.2.1 that the asymmetric roughness geometry in the high and low altitude

cases are scaled uniformly such that the roughness heights are one-quarter of

the thermal boundary layer thickness, while all other geometric ratios remain

the same. Again, only results from the analysis of the CFD slip wall and

hybrid solutions are presented.

Comparisons of the velocity field are presented in Figure 5.19 for the

wake flow at a location approximately 7k downstream of the roughness cen-
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Table 5.3: Total surface heating (asymmetric geometry (80 km))

Roughness Peak [W/m2] Vortex Peak (LE) [W/m2]

CFD (no-slip) 5.38× 105 2.13× 105

CFD (slip) 4.79× 105 (−11.0%) 2.02× 105 (−5.2%)
Hybrid 4.50× 105 (−16.4%, −6.1%) 2.17× 105 (+1.9%, +7.4%)

x = 1.85 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 4.76× 105 —
CFD (slip) 4.10× 105 —

Hybrid 4.49× 105 —
x = 1.91 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 3.86× 105 1.81× 105

CFD (slip) 3.54× 105 1.69× 105

Hybrid 3.75× 105 1.37× 105

x = 1.96 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 1.48× 105 2.12× 105

CFD (slip) 1.44× 105 2.01× 105

Hybrid 2.41× 105 2.17× 105

x = 2.04 m Roughness [W/m2] Vortex (LE/TE) [W/m2]

CFD (no-slip) — 1.95× 105 / 7.66× 104

CFD (slip) — 1.87× 105 / 7.52× 104

Hybrid — 1.99× 105 / 8.25× 104

ter. The figures are oriented looking downstream in the +x direction. The

streamwise velocity contours are shown in Figure 5.19 (a). The field contours

represent the hybrid solution, and the CFD values are shown by the contour

lines. The general structure in the wake is similar to the 80 km case presented

earlier at a location 10k downstream, but the high and low speed regions cen-

tered over z = ±0.02m appear more pronounced at this lower altitude. In

both solutions, the wake flow produced by the roughness indicates high-speed

flow which penetrates toward the wall behind the leading edge (z ≈ −0.02 m),
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and to a lesser extent in the flow behind the trailing edge (z ≈ 0.03 m). In

between these regions, low speed flow is being pushed upward away from the

wall forming a streak of low speed flow in the wake centered over z = 0.02 m.

The CFD solution (line contours) again predicts a slightly wider low speed

streak compared to the hybrid solution.

The counter-rotating vortices that originate from the leading and trail-

ing edges of the roughness are visualized by isocontours of Q in Figure 5.19

(b). The CFD vortex pairs are shown by the black isocontours, and the hybrid

vortices are shown in red. The sense of rotation of these vortices is indicated by

the sets of arrows, and the roughness geometry is shown in gray at this down-

stream location for reference. The vortex pairs from both CFD and DSMC

are represented by isocontours of Q = 6.0×106, and the vortices generated by

the roughness are generally stronger at this low altitude condition.

The relative strength of the vorticity in the wake predicted by the

hybrid and CFD solutions are similar in this case, but the span of the CCW

leading edge vortex in the wake of the roughness is significantly greater than

the CFD solution. The trailing edge vortices predicted by both solutions are

considerably stronger at this altitude. The position of the CFD and hybrid

vortex pairs are very similar, but the CFD trailing edge vortices are observed

to be stronger than the hybrid vortices. Although the trailing edge vortices

are weak in comparison to the leading edge vortex pair, the difference in the

relative strength of these trailing edge vortices predicted by CFD and DSMC

are found to have a measurable impact on the surface heating in the wake.
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(a) streamwise velocity contours (x=1.96 m) (b) vortex pairs from Q-criterion (x=1.96
m)

Figure 5.19: Flow features in wake of asymmetric roughness (60 km altitude)
at x = 1.96 m. (a) Streamwise velocity contours from hybrid solution (contour
flood) and CFD slip-wall solution (contour lines). (b) Vortex pairs determined
from Q-criterion. Vortices are shown as isocontours of Q = 6.0× 106 for both
CFD (black) and for hybrid (red) solutions, and the roughness (gray) is shown
for reference. Note that the span of the CCW leading edge vortex is greater
in the hybrid solution.
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(a) translational/vibrational thermal non-
equilibrium contours over leading edge
(z=-0.02 m)

(b) regions of translational/vibrational
thermal non-equilibrium (200K, -500K)
in wake (x=1.96m)

Figure 5.20: Translational/vibrational thermal non-equilibrium in flow sur-
rounding roughness at 60km. (a) Thermal non-equilibrium contours from hy-
brid solution (top) and CFD slip-wall solution (bottom) taken at the roughness
leading edge z = −0.02 m. Contours indicate the difference between transla-
tional and vibrational temperatures, where TNEQ = Ttr−Tvib. (b) Isocontours
of thermal non-equilibrium in the wake, taken at a location 7k downstream of
roughness. Colored isocontours (levels in (a)) represent hybrid solution, black
represent corresponding CFD solution.
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The translational/vibrational thermal non-equilibrium in the flow pre-

dicted by the hybrid and CFD slip wall solutions are presented next in Figure

5.20(a) and (b). The contours in Figure 5.20 (a) show the difference in [K] in

the translational and vibrational temperatures in the flow. The hybrid solution

is again shown on top, and the CFD solution is mirrored on the bottom for

comparison. This slice is taken at a spanwise location at the leading edge of the

roughness, (z = −0.02 m). At this lower altitude, the translational/vibrational

non-equilibrium found in the bow shock region is generally weaker than in the

80 km case, but the non-equilibrium in the expansion region is slightly stronger

here. The hybrid solution again predicts higher vibrational non-equilibrium in

the bow shock region and in the wake of the roughness compared to the CFD

solution. In the expansion region that forms aft of the roughness (indicated

by the blue contours), the CFD solution predicts slightly greater vibrational

non-equilibrium. A comparison of the thermal non-equilibrium in the wake

at a location 7k downstream of the roughness center is provided in Figure

5.20 (b). The hybrid solution shows a greater spanwise extent of thermal

non-equilibrium near the wall compared to the CFD solution, although the

non-equilibrium here is quite weak. The expansion region above (blue con-

tours) is shown above.

5.4.4 Local surface heating at 60 km

The surface heat flux predicted by the CFD and hybrid solutions are

presented in Figure 5.21(a)-(c). The flow in these figures is again in the gen-
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eral x-direction, and the contours represent the local surface heating on the

roughness and in the wake. The baseline heating for this lower altitude case

was approximately Q0 = 1.1 × 105 [W/m2], or 17% greater than the baseline

heating in the high altitude case. The windward side of the roughness again

experiences the highest surface heating, particularly the leading edge region,

and the heating drops off gradually along the crest of the roughness toward

the trailing edge. The presence of the roughness has a more pronounced im-

pact on the surface heating upstream of the roughness in the CFD solutions.

The surface heating in the wake of the roughness is again qualitatively similar

among the CFD and hybrid solutions. All of the solutions indicate that the

most substantial heating in the wake is due to the leading edge vortex, but

the hybrid solution indicates a wider heating footprint due to the leading edge

vortex. The heating due to the trailing edge vortex is more prominent in the

CFD solutions; the same observation was made in the high altitude cases, but

the heating augmentation in the trailing edge wake region is enhanced at this

lower altitude.

The total surface heating is again extracted at several streamwise loca-

tions from the CFD and hybrid solutions, both over the roughness and in the

wake, as indicated schematically in Figure 5.17. Note that the roughness is still

centered over x = 1.91 m and z = 0 m, but the spanwise and streamwise axes

shown in this figure correspond to the high altitude case. The spanwise surface

heating profiles are compared at locations of peak heating on the roughness,

the center of the roughness, the peak heating in the wake and at a location
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(a) CFD no-slip wall (b) CFD slip wall (c) hybrid CFD/DSMC

Figure 5.21: Surface heating contours generated by asymmetric roughness at
60 km from (a) CFD no-slip wall (b) CFD slip wall and (c) hybrid solutions.
General flow direction is from bottom to top.

10k downstream of the roughness center (Figure 5.17, red, orange, yellow and

purple profiles).

The corresponding spanwise profiles are presented in Figure 5.22 (a)-

(d). To facilitate comparison between these results and the high altitude

results, the low altitude profiles have been normalized by the baseline heating

value Q0 = 1.1× 105 [W/m2] and are shown by the dark lineplots as the ratio

Qw/Q0. The high altitude profiles from Section 5.4.2 have been normalized

by the corresponding baseline heating value Q0 = 9.1 × 104 [W/m2] and are

presented as the faded lineplots. CFD no-slip surface heating is represented

by the solid line, the slip surface heating is shown by the dashed line, and the

hybrid solution is shown as the dash-dotted line, and all profiles are provided

over the spanwise distance normalized by the corresponding roughness height,
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z/k.

The first set of profiles in Figure 5.22(a) are extracted at the streamwise

location of peak surface heating predicted by the hybrid solution. The heating

profiles from the low altitude case are qualitatively very similar to the high

altitude profiles, but the heating augmentation is nearly seven times the base-

line heating, whereas the high altitude case shows a heating augmentation on

the roughness of approximately five times the baseline value. The peak rough-

ness and vortex heating values corresponding to each low altitude solution are

presented in Table 5.4. The maximum peak heating occurring on the rough-

ness predicted by the hybrid solution is 18% less than the CFD no-slip value,

and 11% less than the CFD slip value. The CFD slip solution again provides

a better approximation to the peak heating on the roughness, similar to the

findings in Section 5.4.2, although the overall difference in heating between

the hybrid/CFD solutions has increased slightly.

The surface heating profiles in Figure 5.22(b) show the spanwise heating

profile through the roughness center. Similar to the high altitude case, the

low altitude profiles indicate that the maximum heating on the roughness

occurs slightly forward of the crest of the roughness, as indicated by the local

maximum which occurs to the right of the roughness centerline. The low

altitude CFD solutions show a small bump in the heating profile at z/k ≈ 2.5,

which indicates the presence of a weak vortex near the wall just upstream of

the roughness. This feature is not observed in the low altitude hybrid solution.

The peak heating in the wake caused by the leading edge vortex is
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Figure 5.22: Spanwise profiles of surface heating taken at various streamwise
locations for asymmetric roughness at 60 km, generated from CFD (no-slip
and slip wall) and hybrid solutions. Profiles from 80 km case are presented
for comparison, and all profiles are normalized by the corresponding baseline
heating values. Profiles highlight (a) peak heating on roughness, (b) heating
profile at roughness center, (c) peak vortex heating in wake and (d) heating
profile in wake. Profile colors correspond to schematic of Figure 5.17 (yellow
is replaced by black).
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Table 5.4: Total surface heating (asymmetric geometry (60 km))

Roughness Peak [W/m2] Vortex Peak (LE) [W/m2]

CFD (no-slip) 8.56× 105 3.92× 105

CFD (slip) 7.86× 105 (−8.2%) 3.76× 105 (−4.1%)
Hybrid 6.95× 105 (−18.8%, −11.58%) 4.01× 105 (+2.3%, +6.6%)

x = 1.88 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 7.79× 105 —
CFD (slip) 7.47× 105 —

Hybrid 6.95× 105 —
x = 1.91 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 6.73× 105 3.14× 105

CFD (slip) 6.14× 105 3.04× 105

Hybrid 4.91× 105 3.57× 105

x = 1.92 m Roughness [W/m2] Vortex (LE) [W/m2]

CFD (no-slip) 6.21× 105 3.76× 105

CFD (slip) 5.80× 105 3.58× 105

Hybrid 4.49× 105 3.99× 105

x = 1.98 m Roughness [W/m2] Vortex (LE/TE) [W/m2]

CFD (no-slip) — 3.64× 105 / 1.47× 105

CFD (slip) — 3.53× 105 / 1.43× 105

Hybrid — 3.56× 105 / 1.25× 105

shown in the profile of Figure 5.22(c), where the vortex heating is centered

over z/k ≈ −4. Again, this location corresponds to the peak leading edge

vortex heating predicted by the hybrid solution. Comparison of this value to

the CFD no-slip and slip solutions in Table 5.4 shows that again, the hybrid

solution predicts slightly higher heating due to the leading edge vortex.

The final heating profiles are acquired at a location 10k downstream of

the roughness center (Figure 5.22(d)). The maximum in the heating profiles

at z/k ≈ −4 is due to the leading edge vortex. Towards the centerline, the
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hybrid solution indicates comparatively high heating in the wake, which was

also observed in the high altitude case. The heating downstream of the trailing

edge vortex (centered over z/k ≈ 4.5) is significantly more pronounced in the

CFD solutions, while the trailing edge streak in the hybrid solution appears

to blend in with the surrounding surface heating in the wake. However, in

comparison to the leading edge vortex heating, the trailing edge vortex is

relatively weak.

5.5 Symmetric Geometry Configuration

5.5.1 Flowfield comparisons at 80 km

This final set of results presents a comparison of the CFD and hybrid

solutions for the symmetric roughness geometry at 80 km. Recall from Section

5.2.1 that the hybrid solution of the symmetric roughness is obtained on a half-

span domain and utilizes a specular (symmetry) boundary condition along the

roughness centerline.

Comparisons of the velocity field are presented in Figure 5.23 for the

wake flow at a location 5k downstream of the roughness center. The figures

are oriented looking downstream in the +x direction. The streamwise velocity

contours are shown in Figure 5.23(a). The field contours represent the hybrid

solution, and the CFD values are shown by the contour lines. The velocity

deficit in the wake flow is positioned over the roughness centerline at z =

0 m, with high-speed flow penetrating toward the wall on either side at z =

±0.03 m. The CFD solution (line contours) again predicts a slightly wider low
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(a) streamwise velocity contours (x=1.97 m) (b) vortex pairs from Q-criterion (x=1.97
m)

Figure 5.23: Flow features in wake of symmetric roughness (80 km) at x =
1.97 m. (a) Streamwise velocity contours from hybrid solution (contour flood)
and CFD slip-wall solution (contour lines). (b) Vortex pairs determined from
Q-criterion. Vortices are shown as isocontours of Q = 7.0 × 107 for CFD
(black) and Q = 1.0× 108 for hybrid (red) solutions, and the roughness (gray)
is shown for reference. Note that the positions of vortex cores are similar, but
the hybrid vorticity (relative to the strain rate) is stronger.

speed streak compared to the hybrid solution, but this difference is observed to

be more pronounced in the asymmetric roughness cases presented in Sections

5.4.1 and 5.4.3.

The high- and low-speed streaks that are generated by the symmetric

roughness correspond to a pair of counter-rotating vortices that form off of

the spanwise corners of the roughness. These vortex pairs are visualized by

isocontours of Q in Figure 5.23(b). The CFD vortex pairs are shown by the

black isocontours, and the hybrid vortices are shown in red. The sense of

rotation of these vortices is indicated by the sets of arrows, and the roughness

geometry is shown in gray at this downstream location for reference. The

positions of these vortex pairs in the wake of the roughness are nearly identical,

and in particular it is noted that the stronger vortices located nearest to the

roughness centerline have nearly the same spanwise extent. The difference in
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Figure 5.24: Translational/vibrational thermal non-equilibrium in flow sur-
rounding symmetric roughness at 80 km. (a) Thermal non-equilibrium con-
tours from hybrid solution (top) and CFD slip-wall solution (bottom) taken
at the roughness leading edge z = 0 m. Contours indicate the difference be-
tween translational and vibrational temperatures, where TNEQ = Ttr − Tvib.
(b) Isocontours of thermal non-equilibrium in the wake, taken at a location
5k downstream of roughness. Colored isocontours (following levels in (a))
represent hybrid solution, black represent corresponding CFD solution.

the spanwise extent of the CCW leading edge vortices that was observed in

the asymmetric roughness case is not found here. The analysis of the CFD

and hybrid solutions using the Q-criterion indicates that the vortices (near the

centerline and closer to the wall) generated by the hybrid solution are observed

to be stronger.

The translational/vibrational thermal non-equilibrium in the flow pre-

dicted by the hybrid and CFD slip wall solutions are presented next in Figure

5.24(a) and (b). The contours in Figure 5.24(a) show the difference ([K]) in

the translational and vibrational temperatures in the flow for the hybrid solu-

tion (top), and the CFD solution (bottom). This slice is taken at a spanwise

location at the leading edge of the roughness, (z = 0 m). The degree of vibra-

tional non-equilibrium in the bow shock region is similar to the asymmetric
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roughness presented in Section 5.4.1. However, the non-equilibrium in the ex-

pansion region and in the wake of the symmetric roughness near the wall is

noticeably stronger in this case (Figure 5.24(a) compared to Figure 5.15(a)).

A comparison of the thermal non-equilibrium in the wake at a loca-

tion 5k downstream of the roughness center is provided in Figure 5.24(b).

The spanwise extent of thermal non-equilibrium predicted by the hybrid so-

lution near the wall (red contour) is slightly greater than the CFD solution,

in contrast to the asymmetric geometry (Figure 5.15(b)). However, the over-

all differences between the CFD and hybrid solutions in terms of predicted

thermal non-equilibrium are again on the order of 5%, and so the effects of

thermal non-equilibrium on the overall flowfields are quite subtle.

5.5.2 Local surface heating at 80 km

The surface heat flux predicted by the CFD and hybrid solutions are

presented in Figure 5.25(a)-(c). The flow in these figures is in the general

x-direction, and the contours represent the local surface heating on the rough-

ness and in the wake. The baseline surface heating is the same as the high

altitude asymmetric value, Q0 = 9.1 × 105 [W/m2]. The windward edge of

the roughness experiences the highest surface heating (particularly the lead-

ing corner) and the heating drops off gradually along the crest of the roughness

toward the spanwise corners. Similar to the asymmetric geometry, the CFD

contours indicate that the roughness has a more widespread impact on the

surface heating upstream of the roughness, relative to the hybrid solution.
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(a) CFD no-slip wall (b) CFD slip wall (c) hybrid CFD/DSMC

Figure 5.25: Surface heating contours generated by symmetric roughness at
80 km from (a) CFD no-slip wall (b) CFD slip wall and (c) hybrid solutions.
General flow direction is from bottom to top.

Immediately upstream of the roughness, the CFD solutions indicate relatively

strong vortex heating on either side of the roughness centerline. This vortex

pair appears comparatively weak in the hybrid solution, as indicated by the

streaks of relatively low heating in front of the roughness. In contrast, the

surface heating in the wake of the roughness is generally slightly higher in the

hybrid solution.

To quantify these differences, the total surface heating is extracted at

several streamwise locations from the CFD and hybrid solutions, both over

the roughness and in the wake, as indicated schematically in Figure 5.26. In

particular, the spanwise surface heating profiles are compared at locations of

peak heating on the roughness, the center of the roughness, at a location 5k

downstream of the roughness center and the peak heating in the wake (Figure
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Figure 5.26: Spanwise profiles of surface heating acquired at various stream-
wise locations for symmetric roughness. Profiles highlight peak heating on
roughness (first spanwise profile in red) as well as vortex heating in wake in
the profiles downstream of the roughness (shown schematically in gray).

5.17, red, orange, green and blue profiles).

These spanwise profiles are presented in Figure 5.27 (a)-(d). CFD no-

slip surface heating is represented by the solid line, the slip surface heating is

shown by the dashed line, and the hybrid solution is shown as the dash-dotted

line. The first set of profiles (Figure 5.27(a)) are extracted at the streamwise

location of peak surface heating predicted by the hybrid solution, although the

location of peak heating on this roughness geometry was very similar among

the solutions. The heating profile is extremely peaked due to the small radius

of curvature on the leading edge rounded corner, which has a profound effect

on the peak heating values reported by each of the solutions in Table 5.5. The

CFD no-slip solution predicts the highest peak heating on the rounded corner,
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while the CFD slip wall peak heating is nearly 40% less than the no-slip value.

In comparison to the hybrid solution, it is observed that the DSMC peak

heating is approximately 14% lower than the slip wall value. Throughout each

of the cases examined, it is found that the CFD slip wall solution provides the

closest agreement to the hybrid solution peak surface heating on the roughness.

Table 5.5: Total surface heating (symmetric geometry (80 km))

Roughness Peak [W/m2] Vortex Peak [W/m2]

CFD (no-slip) 2.70× 106 1.58× 105

CFD (slip) 1.66× 106 (−38.5%) 1.53× 105 (−3.2%)
Hybrid 1.43× 106 (−47.0%, −13.8%) 1.69× 105 (+7.0%, +10.5%)

x = 1.88 m Roughness centerline [W/m2] Vortex [W/m2]

CFD (no-slip) 2.70× 106 1.36× 105

CFD (slip) 1.66× 106 1.23× 105

Hybrid 1.43× 106 1.21× 105

x = 1.91 m Roughness centerline [W/m2] Vortex [W/m2]

CFD (no-slip) 2.27× 105 1.26× 105

CFD (slip) 2.19× 105 1.19× 105

Hybrid 2.37× 105 9.88× 104

x = 1.97 m Wake centerline [W/m2] Vortex [W/m2]

CFD (no-slip) 2.09× 104 1.42× 105

CFD (slip) 2.31× 104 1.38× 105

Hybrid 2.96× 104 1.54× 105

x = 2.00 m Wake centerline [W/m2] Vortex [W/m2]

CFD (no-slip) 2.10× 104 1.43× 105

CFD (slip) 2.77× 104 1.52× 105

Hybrid 3.60× 104 1.69× 105

To either side of the roughness centerline in Figure 5.27(a), a second

local maximum in the peak heating occurs in the heating profiles. This is

due to the vortex heating found just upstream of the roughness at the wall.
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Figure 5.27: Spanwise profiles of surface heating taken at various streamwise
locations for symmetric roughness at 80 km, generated from CFD (no-slip
and slip wall) and hybrid solutions. Profiles highlight (a) peak heating on
roughness, (b) heating profile at roughness center, (c) peak vortex heating in
wake and (d) heating profile in wake. Profile colors correspond to schematic
of Figure 5.17.
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These peak vortex heating values corresponding to each solution are presented

in Table 5.5. The local maximum heating values (on the roughness/wake

centerline and on the vortex heating streaks) at each streamwise location are

also provided.

The second set of profiles show the heating taken at the streamwise

location corresponding to the roughness center (Figure 5.27(b)). The peaks

in the heating profiles (centered over z ≈ ±0.03 m) correspond to the heating

over the rounded corners of the roughness; these values have dropped nearly

an order of magnitude from the surface heating on the leading corner of the

roughness, as seen from the values reported in Table 5.5, at stations x = 1.88 m

and x = 1.91 m. The vortex heating along the side of the roughness at the

wall is found to decrease slightly in each of the solutions, with the hybrid

solution predicting the lowest vortex heating in both locations (x = 1.88 m

and x = 1.91 m).

The next set of profiles are taken at a streamwise location correspond-

ing to 5k downstream of the roughness center, and includes portions of the

recirculating wake region between z = ±0.02 m. At this streamwise location

(x = 1.97 m), the peak heating predicted by the hybrid solution already ex-

ceeds the CFD no-slip heating value, both at the wake centerline and within

the peak vortex heating region. This trend continues through the remainder

of the hybrid domain. At the downstream location of x = 2.00 m, the hybrid

solution reaches a peak value in the vortex heating of 1.69× 105 [W/m2]. The

hybrid solution again predicts a higher surface heating in the wake due to
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vortex heating, 7% higher than the CFD no-slip value and almost 11% higher

than the CFD slip value. It is interesting to note that in all cases examined,

the CFD no-slip solution provides better agreement to the hybrid solution in

the vortex heating regions, which is contrary to the finding that the CFD slip

solution provides better agreement for peak heating on the roughness.

5.6 Summary

The purpose of this chapter was to examine in detail the importance

of non-equilibrium processes when modeling hypersonic boundary layer flow

over discrete surface roughness. These studies has two principal objectives.

The first was to identify and quantify the effects of rarefaction through com-

parison of several macroscopic quantities (flowfield and surface) from CFD

and hybrid solutions. The quantities examined in this work included the dis-

turbance velocity field through the Q-criterion, the translational/vibrational

thermal non-equilibrium in the flow surrounding the roughness, and the total

heating to the surface. The second objective was to gain insight regarding

the mechanism by which the non-equilibrium effects are manifested. This was

accomplished through detailed comparison of the CFD (no-slip and slip wall

conditions) with the hybrid solutions. The surface roughness geometries and

flow conditions examined in this work were selected to allow examination of a

variety of characteristic geometric and flow length scales, including roughness

radius of curvature and molecular mean free path.

Several important observations were made from these investigations.
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The disturbance velocity field generated by the CFD solutions (using either

no-slip or slip wall conditions) produced a more prominent velocity deficit

region in the wake flow compared to the hybrid solution. This observation

was most apparent for the asymmetric roughness geometries (either at high or

low altitudes), but was more subtle in the case of the symmetric roughness.

Recirculation regions developed immediately downstream of the roughness, af-

ter which the disturbed flow organized into streamwise-oriented vortices in the

wake. The comparison of these vortices, identified in both CFD and hybrid so-

lutions through the Q-criterion, provides insight regarding the non-equilibrium

mechanisms involved in these problems. The streamwise vortices that form in

the wake of the asymmetric roughness are found to be slightly stronger in

the hybrid solution compared to the CFD solutions. Moreover, the counter-

clockwise (CCW) vortex generated form the leading edge has a larger spanwise

extent in the hybrid solution, for both high and low altitude cases. The stream-

wise vortices in the wake of the symmetric roughness are also slightly stronger

in the hybrid solution. The strength and span of these vortices in the wake

of the roughness have a direct impact on the near-wall gradients and surface

heating in the wake. In fact, the hybrid peak surface heating downstream of

the roughness is found to be higher than the predicted CFD (both no-slip and

slip) values as a result.

The translational/vibrational thermal non-equilibrium was also exam-

ined and compared among the solutions, with particular emphasis on the non-

equilibrium in the bow shock, expansion and in the wake. Although the hybrid
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solution predicted slightly higher vibrational non-equilibrium in the bow shock

and in the wake compared to CFD, the differences are quite small. From these

investigations, the impact of vibrational non-equilibrium is considered negligi-

ble, and it is not possible to identify a distinct mechanism by which vibrational

non-equilibrium affects the flowfield solution.

The surface heating predicted by the CFD (no-slip and slip) and hybrid

solutions were examined in detail, and the results from these comparisons were

tabulated in Tables 5.3-5.5. The hybrid solution consistently predicted a lower

peak heating on the surface of the roughness compared to the CFD values,

and higher peak heating in the wake of the roughness due to vortex heating.

Since several geometric parameters and flow conditions were examined in this

chapter, the behavior of the surface heating on the roughness and in the wake

in relation to the degree of rarefaction of the flow are summarized in Figures

5.28 and 5.29 below.

The first figure (Figure 5.28) presents the peak heating on the surface of

the roughness, normalized by the respective baseline heating value (Qw/Qo) for

the three cases examined. These heating values are plotted as a function of the

local Knudsen number, defined as the hard sphere molecular mean-free-path in

the shock layer, denoted as λ′k,HS, divided by the roughness radius of curvature,

r. The CFD no-slip wall, CFD slip wall and hybrid solutions are shown with

the solid lines, and the relative difference (%) between the hybrid and CFD slip

wall solutions as a function of local Knudsen number is shown in the dashed

line. The hybrid solution consistently predicts a lower peak surface heating on

173



λ’
k,HS

/r

Q
w
/Q

o

%
d

if
fe

re
n

c
e

10
­1

10
0

10
1

5

10

15

20

25

30

35

0

5

10

15

20

CFD no slip
CFD slip

hybrid

Figure 5.28: Roughness peak heating as a function of local Knudsen num-
ber. Dashed line indicates the relative difference (expressed as a percentage)
between CFD slip and hybrid solutions.

the roughness for the three Knudsen numbers examined. The general trend

indicates that the relative difference between the peak heating predicted by

the CFD slip and hybrid solutions increases with increasing Knudsen number,

although more points would be necessary to establish a stronger relationship.

The second figure (Figure 5.29) presents the peak heating in the wake

of the roughness due to vortex heating, normalized by the respective baseline

heating value (Qw/Qo) for the three cases examined. These heating values are

plotted as a function of Knudsen number. The Knudsen number used here is

defined as the hard sphere molecular mean-free-path based on flow conditions

at the roughness height of an undisturbed boundary layer, λk,HS, divided by

the roughness radius of curvature, r. The CFD no-slip wall, CFD slip wall
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Figure 5.29: Peak heating in the wake as a function of Knudsen number.
Dashed line indicates the relative difference (expressed as a percentage) be-
tween CFD slip and hybrid solutions.

and hybrid solutions are shown with the solid lines, and the relative difference

(%) between the hybrid and CFD slip wall solutions as a function of Knudsen

number is shown by the dashed line. The hybrid solution consistently predicts

a higher peak surface heating in the wake for the three Knudsen numbers

examined. The general trend indicates that the difference (indicated as a

negative percentage since the CFD value is less than hybrid) between the

peak heating predicted by the CFD slip and hybrid solutions again increases

with increasing Knudsen number.

From the analysis of the cases examined in this work, it is concluded

that the non-equilibrium mechanisms at work in the complex flowfield gen-

erated by the roughness can not be captured through a slip surface model

175



alone. While the peak heating on the roughness from the DSMC solution is

best approximated using the slip wall condition, the same is not true for the

peak heating in the wake. The details by which the disturbance field develops

in the non-equilibrium region of the roughness are found to have a measurable

impact on the strength and span of the streamwise vortices in the wake as well

as the surface heating downstream.
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Chapter 6

Conclusions

A summary of this work is presented below, with emphasis on the key

principles, methods and observations that were established throughout this

work. The major contributions of the research efforts are outlined next, with

focus on the two novel hybrid methods that are formulated for general use

within the hybrid community. This chapter closes with considerations for

future research directions.

6.1 Summary

This work is focused on the development of a hybrid DSMC/CFD

solver to examine hypersonic boundary layer flow over discrete surface rough-

ness. The purpose of these investigations is to identify and quantify the non-

equilibrium effects that influence the roughness-induced disturbance field and

surface quantities of interest for engineering applications. The surface rough-

ness height k considered in this work is comparable to the boundary layer

thickness, such that k is up to several hundred mean free paths. In this

regime, rarefaction effects are expected to have an impact on the details of

the predicted surface flux quantities (shear stress, heat flux), as well as the

177



disturbance field generated by the surface roughness. To examine this hy-

pothesis, direct simulation Monte Carlo (DSMC) is used to model hypersonic

boundary layer flow in the vicinity of a discrete roughness element, while a

CFD solver is used to provide the mean-flow solution at the boundary of the

DSMC region, in a loosely-coupled hybrid approach. To this end, a new hybrid

framework is developed for high-fidelity hybrid solutions involving five-species

air hypersonic boundary layer flow applications.

The construction of a consistent hybrid DSMC/CFD framework relies

on the fundamental principles established through (Generalized) Chapman-

Enskog Theory. This theory establishes the relationship between the DSMC

and CFD methods, which provide the molecular and continuum represen-

tations of the flowfield. The CFD method, which involves solution of the

Navier-Stokes equations, is limited to flows which are near equilibrium, as

the Navier-Stokes equations are formulated assuming (a priori) that the flow

follows a Chapman-Enskog distribution. The DSMC method makes no under-

lying assumption of the probability distribution function describing the flow,

and can therefore be used to accurately model strong non-equilibrium flows.

The collision-integrals and the expression for the perturbation are two impor-

tant principles that are established from Chapman-Enskog theory, and their

significance for this hybrid work is discussed in detail. The perturbation for-

mulated from Generalized Chapman-Enskog Theory (discussed in Chapter 3),

provides a link between the non-equilibrium macroscopic fluxes determined

from CFD, and the non-equilibrium distribution function describing particle
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thermal velocities and internal energies in DSMC. The collision-integrals pro-

vide a link between the microscopic collision dynamics and the definition of

the transport coefficients, as well as the macroscopic transport fluxes.

A novel approach for the generation of particles at a hybrid CFD/DSMC

interface is presented for simple gases and gas mixtures with internal degrees

of freedom. DSMC particles generated at a hybrid boundary are assigned ther-

mal velocities using a non-equilibrium surface reservoir approach, in which the

fluxes of mass, momentum and energy determined from the CFD solution are

used to prescribe the appropriate velocity distribution function used in the

DSMC particle generation. The non-equilibrium surface reservoir approach is

first outlined for a simple (single-species, monatomic) gas, and is then extended

to gas mixtures with internal degrees of freedom, in which additional diffusion

and internal heat flux terms are included through a rigorous formulation of

the perturbation using Generalized Chapman-Enskog Theory. This formu-

lation introduces new breakdown parameters for use in hybrid DSMC/CFD

applications, and the new sampling algorithm allows for the generation of

DSMC internal energies from the appropriate non-equilibrium distribution for

the first time in the literature. The significance of the diffusion, shear stress

and heat flux parameters in the perturbation are examined at a hybrid inter-

face for five-species air flows common to engineering applications. The validity

of the Chapman-Enskog perturbation at each of these hybrid interfaces is as-

sessed by comparison with the Generalized Chapman-Enskog perturbations.

The contribution of the internal heat fluxes to the overall perturbation is found
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to be of the same order as the stress tensor components, underscoring the im-

portance of DSMC particle generation from the Generalized Chapman-Enskog

distribution.

This work also addressed the consistency of the transport properties

achieved through the DSMC collision cross-section models and the transport

models employed in CFD. A general approach for achieving consistency in the

species diffusion, viscosity and thermal conductivity coefficients between phe-

nomenological VHS/VSS collision cross section models and the SCEBD/Gupta

et al.-Yos models is outlined for five-species air. The DSMC transport co-

efficients were approximated from the SCEBD model (diffusion), Chapman-

Enskog theory (viscosity and translational thermal conductivity) and Eucken’s

relation (internal thermal conductivities), and the corresponding collision in-

tegrals were determined according to the VHS or VSS collision cross section

model. The transport coefficients from the SCEBD and Gupta et al.-Yos

models were generated using collision integrals computed from more realistic

intermolecular potentials. These transport coefficients were considered as the

‘standard’ values to which the DSMC transport coefficients were fitted by se-

lectively adjusting the VHS/VSS parameters using the Nelder-Mead Simplex

Method. Five species air mixtures in chemical equilibrium were examined, and

several (prescribed) non-equilibrium conditions were examined.

The transport coefficients generated from the best-fit VHS model pa-

rameters were found to be in relatively poor agreement with the SCEBD and

Gupta et al.-Yos values compared to the VSS model, regardless of the collision
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pairing approach used. This underscores the importance of using the VSS

model for flows involving gas mixtures, as the scattering exponent α allows for

a consistent representation of both the viscosity and diffusion cross sections.

In general, the VSS model should be used for conditions in which species dif-

fusion is important, such as flows involving strong normal shocks or chemical

reactions/reacting surfaces.

The concepts of the hybrid framework and techniques discussed in

Chapters 2-4 are brought together and applied to model hypersonic boundary

layer flow over discrete surface roughness. In particular, the hybrid approach is

used to provide a detailed non-equilibrium solution in the region surrounding

the roughness as well as in the near wake region. The three-dimensional flow-

field results are presented for an asymmetric geometry configuration at high

and low altitude conditions, and a symmetric geometry configuration which is

examined at high altitude conditions. The CFD and hybrid DSMC flowfield

solutions from these cases are compared and analyzed, and the importance of

non-equilibrium effects are assessed from these results.

Detailed comparisons among the hybrid solution and the CFD no-slip

and slip wall solutions were made to examine the differences in surface heating,

translational/vibrational non-equilibrium in the flow near the roughness, and

the vortex structures in the wake through the Q-criterion. In all cases exam-

ined, the hybrid solution predicts a lower peak surface heating to the roughness

compared to either CFD solution, and a higher peak surface heating in the

wake due to vortex heating. The observed differences in vortex heating is a
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result of the predicted vortex structures which are highlighted using the Q-

criterion. The disturbance field modeled by the hybrid solution organizes into

a system of streamwise-oriented vortices which are slightly stronger and have

a greater spanwise extent compared to the CFD solutions. As a general trend,

it was observed that these differences in the predicted heating by the hybrid

and CFD solutions increase with increasing Knudsen number. This trend is

found for both peak heating values on the roughness and in the wake.

6.2 Contributions

The objective of this work is to develop a general, consistent hybrid

DSMC/CFD approach, with application to hypersonic boundary layer flow

over discrete surface roughness. The hybrid approach allows for an efficient

yet detailed solution of the nonequilibrium disturbance field generated by the

roughness, which is necessary in order to understand and quantify the influence

of rarefaction in the multiscale flow application examined in this work. The

flow conditions examined are representative of typical laminar boundary layer

edge conditions on the shuttle orbiter belly during early stages of a reentry

trajectory. Therefore, the hybrid approach presented here has been extended

to include effects of species diffusion and heat flux from internal energy modes

for application in a five species air mixture. Ionized or chemically reacting

flows are not considered in the present work.

Hybrid methods require a careful treatment of the physical models em-

ployed in the CFD and DSMC solvers. Although significant modification of the
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DSMC solver was required for this hybrid application, this work utilized the

existing models available within the DSMC and CFD solvers (where possible).

This work introduces an approach for achieving consistency in the transport

properties of mass diffusion, viscosity and thermal conductivity between the

two solvers, and a consistent approach for vibrational thermal relaxation is also

employed. A novel approach for hybrid particle generation is also presented

for the five species air mixture, but can be applied for general gas mixtures

with internal energy. Additional modifications were made to the DSMC solver

to allow for the large scale simulations necessary for the three-dimensional

boundary layer flow simulations. The major efforts and contributions of this

dissertation are summarized below.

• Devised an approach for achieving consistency in transport properties

between DSMC and CFD solvers, including species diffusion, mixture

viscosity, and translational and internal thermal conductivities.

• Formulated a novel approach for hybrid particle generation in nonequi-

librium flows involving gas mixtures with internal energy, based on Gen-

eralized Chapman-Enskog Theory.

• Implemented Millikan and White thermal relaxation rates (with Gimelshein

correction factor) and Park’s high temperature correction in DSMC solver

and libraries.

• Modified DSMC solver to examine influence of near-wall cell population

on the predicted surface heat flux.
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• Implemented new hybrid particle generation algorithm in DSMC libraries,

preprocessors and solvers.

• Modified DSMC libraries, preprocessors and solvers to enable simulations

with unprecedented number of simulated particles.

• Generated and compared continuum and hybrid flowfield solutions for

various roughness geometries and conditions relevant to aerospace appli-

cations.

6.3 Future Considerations

6.3.1 Transport properties: extension to weakly ionized flows

The transport properties in these studies are restricted to the 5-species

air gas model. Many re-entry applications however, require consideration of

thermochemical non-equilibrium flows at higher enthalpy involving weak ion-

ization. Under these conditions, the 11-species air model would be necessary

to account for physical processes due to ion/ion and heavy/ion interactions.

The current fitting method (Nelder-Mead) operates on the premise that the

transport coefficients are expressed in terms of the collision integrals, which,

for neutral gas mixtures (e.g., 5-species air), are strictly a function of tempera-

ture. The extension of the approach outlined in Chapter 4 to a weakly ionized

11-species air model would require several modifications to the current fitting

method:

(a) It would be necessary to reformulate the underlying expressions
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used in the calculation of the transport coefficients to include ion-neutral,

electron-neutral and charged particle (electron-ion, electron-electron and ion-

ion) interactions in a way that is consistent with the representation of these

interactions in DSMC. Expressions for the transport coefficients/collision in-

tegrals involving these interactions are available in the literature [34].

(b) The transport coefficients involving charged particle interactions are

expressed in terms of shielded Coulomb collision integrals, which are a function

of temperature as well as the electron number density. This dual-dependence

introduces an additional challenge in the fitting process, as the fitting must

now be conducted over variable temperature and electron number density, in

the n-parameter space, where n is the number of collision model parameters.

It may be possible to reduce this dual-dependence if the collision integrals

show a strong dependence on temperature and only a weak dependence on

electron number density [53, 75], but this would certainly need to be examined

in detail. It may also be possible to conduct the Nelder-Mead fit over both

dependencies, but this has not been tested within the Nelder-Mead algorithm.

6.3.2 Finite-rate chemistry

Application of this hybrid approach is currently limited to chemically

frozen hypersonic flows, in which it is assumed that all reactions occur on a

timescale which is much longer than a characteristic flow time. Future research

could extend this hybrid approach to include contributions from chemical re-

actions. The general issues encountered by including chemistry in a hybrid
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solution are conceptually similar to the issues concerning the transport prop-

erties: the chemistry models employed by the DSMC and CFD solvers are

based on the use of rate coefficients, but the details in the model implementa-

tions are fundamentally different between the two solvers. The primary goal

of this extension would be to achieve consistency in the chemistry models cur-

rently employed by the solvers, and to devise a general hybrid approach that

incorporates the effects of chemical reactions in the hybrid boundary condi-

tion. After this consistency is established, the next step would be to explore

the use of more accurate, high-fidelity thermo-chemical models in the hybrid

DSMC/CFD framework that are currently being developed.

The DSMC method considered in this work uses the Total Collision En-

ergy (TCE) model proposed by Bird to determine the probability of a chemical

reaction event between colliding particles [2]. The TCE model requires that the

reaction rate coefficients, both forward and backward, are specified by a mod-

ified Arrhenius form. However, this incorrectly implies that the equilibrium

constant, which is given by the ratio of forward and backward rate coefficients

from statistical mechanics, may also be expressed in modified Arrhenius form.

To address this issue, the backward rate coefficients in TCE are usually fit to

the modified Arrhenius form over a modest temperature range, but this ap-

proach only approximates the proper backward rate coefficient. Recent work

by Boyd [5] presents a simple extension of the TCE model which correctly sim-

ulates the backward rates, without use of backward rate coefficient fits. This

extension allows for a consistent representation of the forward and backward
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reaction rate coefficients in DSMC and CFD solvers, and could be used as a

preliminary approach to achieve consistency in the chemistry models.

The final task in the extension of this hybrid approach would be to in-

clude the contributions from chemical reactions in the Generalized Chapman-

Enskog perturbation. This would allow for the complete description of the

distribution function for hybrid particle generation in a non-equilibrium react-

ing gas mixture. The general form of this perturbation is given in Nagnibeda

and Kustova [57], but a detailed formulation would be necessary to express

the perturbation in terms of macroscopic quantities obtained from the CFD

solution. This formulation would follow along a similar approach outlined in

Garcia and Alder [23], and Stephani et al. [83], and is expected to produce an

additional set of breakdown parameters for a reacting gas mixture.

6.3.3 Comparative Assessment of CFD/Hybrid Solutions through
Bi-Global Stability Analysis of Base Flows

Preliminary research efforts have been made toward the investigation

of the stability of roughness-induced disturbance fields [32, 33]. The near field

of the roughness sets the stage for the downstream behavior and thus requires

a careful investigation of numerical resolution of the base flow. The vortex

patterns right behind the element form the dominant flow structures and, thus,

the basis for the stability properties of the flow far downstream. Chemical

and thermal non-equilibrium as well as the conditions at the wall influence the

near field of the roughness, resulting in sharp gradients of the flow quantities.
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Results from the current work indicate that rarefaction effects modify the

vortex structure in the wake relative to the CFD solutions, leading to enhanced

heating at the wall. These vortex structures are very relevant for determining

the overall stability of the roughness-induced disturbance field. Additional

efforts involving bi-global stability analysis of these base flows is an important

step to interpreting these observations in the context of roughness-induced

transition.

Regarding the high-enthalpy conditions examined here, previous work

from the CTR Summer Program found that the temperature field significantly

influences the stability behavior [33]. The crossflow-vortex-like leading-edge

vortex downstream of an asymmetric roughness (similar to the present study),

produces instability modes with growth rates almost as large as in the cold

flow case, despite strong wall cooling. The instability of the trailing-edge

vortex, however, is completely suppressed by a high-temperature spot that

coincides with the region of large velocity gradients as a result of dissipation.

Future work involving a careful stability analysis of the CFD and hybrid base

flow solutions could provide an additional quantitative assessment of the non-

equilibrium effects relevant to this problem.
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Appendix A

Sampling of the non-equilibrium surface

reservoir distributions

The evaluation of the non-equilibrium distribution functions for the

surface reservoir in a simple gas (3.6) and a gas mixture with internal energy

(3.19) results in velocity distribution functions describing the tangential and

normal thermal velocity components of particles entering the computational

domain. The tangential components in both cases are described as usual by

regular Maxwellian distributions, and velocity components (Cy,Cz) may be

sampled from this distribution using the Box-Muller method [2, 25].

To sample the distributions describing the normal thermal velocity com-

ponents, we use an acceptance-rejection approach on the distributions shown

in (3.10) and (3.22). For brevity, we present the approach for (3.10), but the

same process is used to sample (3.22). An efficient acceptance-rejection sam-

pling on (3.10) is formulated by normalizing this distribution by its maximum

value f
SR

(Cx,MAX), where (Cx,MAX) is determined by solving the following for

Cx:
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d f
SR

(Cx)

d Cx
=

2β2 exp(−β2C2
x)− 4β4C2

x exp(−β2C2
x)− 4β4Cxu exp(−β2C2

x)

(u
√
πβ)

{
1 + erf(βu) +

1

u
√
πβ

exp(−β2u2)− qx
5
√
π

exp(−β2u2)

−
[

1

u
√
πβ

exp(−β2u2) +
1

2
[1 + erf(βu)]

]
τxx

−1

2

[
1

u
√
πβ

exp(−β2u2) + [1 + erf(βu)]

]
τyy

−1

2

[
1

u
√
πβ

exp(−β2u2) + [1 + erf(βu)]

]
τzz

}
= 0, (A.1)

Cx,MAX =

√
(βu)2 + 2− βu

2β
. (A.2)

The resulting normalized distribution is thus:

f
SR

(Cx)

f
SR

(Cx,MAX)
=

2β(Cx + u) exp

(
1

2
+
βu

2

(
βu−

√
(βu)2 + 2

)
− β2C2

x

)

√
2 + (βu)2 + βu

.

(A.3)

Note that since the terms in the denominator of (A.1) are independent of Cx,

they simply scale the distribution and cancel in the normalization, thus the

result in (A.3) is the same distribution used in the well-established sampling

process for the equilibrium normal velocity component [2].
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Appendix B

Perturbation expressed by flux quantities

For a gas mixture comprising species (s, t) ∈ S, the Generalized Chapman-

Enskog (GCE) perturbation φGCE,s is of the form [21, 57]:

φGCE,s = − 1

n

∑

t

Dt
s · dt−

1

n
As ·∇ log T − 1

n
A(1)
s ·∇ log T1−

1

n
Bs : ∇v (B.1)

The functions Dt
s, As, A

(1)
s and Bs are expanded in Sonine (S

(n)
v (C 2)) and

Waldmann-Trübenbacher (P(p)(E)) Polynomials [57], resulting in functions

which are expressed in terms of the trial functions as:

Dt
s = (ms/2kbTtr)

1/2
n−1∑

p=0

d
t(n)
s,0 S

(p)
3/2(C

2
s )C s (B.2)

As = − (ms/2kbTtr)
1/2

n∑

rpq

as,rpqS
(r)
3/2(C

2
s )P(p)(Erot)P

(q)(Erot − Evib)C s (B.3)

A(1)
s = − (ms/2kbTtr)

1/2
n∑

r

a(1)s,rP
(r)(Evib)C s (B.4)

Bs =

(
C sC s −

1

3
C 2
s I
) n∑

r

bs,rS
(r)
5/2(C

2
s ) (B.5)

It can be shown that, to the first (n = 1) approximation, the multicomponent

diffusion, viscosity and thermal conductivity coefficients may be related to the

trial functions according to [57]:

Dst =
1

2n
d
t(1)
s,0 (B.6)
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Ktr,s =
5kb
4
as,100 (B.7)

Krot,s =
mscrot

2
as,010 (B.8)

Kvib,s =
mscvib

2
a
(1)
s,1 (B.9)

µs =
kbTtr

2
bs,0 (B.10)

We substitute these relations (C.8) - (C.12) into (C.2) - (C.7). Note that the

function As specifies the coefficients of translational and rotational thermal

conductivity (considered as rapid processes), while the function A
(1)
s specifies

the coefficient of vibrational thermal conductivity (considered as a slow pro-

cess) [57]. In substitution of these relations, we evaluate the polynomials and

arrive at the following forms of S
(n)
v and P(p):

d
t(1)
s,0 : S

(p=0)
3/2 (C 2

s ) = 1 (B.11)

as,100 : S
(r=1)
3/2 (C 2

s ) =
5

2
−C 2 P(p=0)(Erot) = 1 P(q=0)(Erot−Evib) = 1 (B.12)

as,010 : S
(r=0)
3/2 (C 2

s ) = 1 P(p=1)(Erot) = Erot − Erot P(q=0)(Erot − Evib) = 1

(B.13)

a
(1)
s,1 : P(r=1)(Evib) = Evib − Evib (B.14)

bs,0 : S
(r=0)
5/2 (C 2

s ) = 1 (B.15)

Thus, the final forms of (C.2) - (C.7) expressed in terms of the transport

coefficients are:

Dt
s = (ms/2kbTtr)

1/2 2nDstC s (B.16)

As,tr = − (ms/2kbTtr)
1/2 4Ktr,s

5kb

(
5

2
− C 2

s

)
C s (B.17)
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As,rot = − (ms/2kbTtr)
1/2 2Krot,s

mscrot

(
Erot − Erot

)
C s (B.18)

As,vib = A(1)
s = − (ms/2kbTtr)

1/2 2Kvib,s

mscvib

(
Evib − Evib

)
C s (B.19)

Bs =
2µs
kbTtr

(
C sC s −

1

3
C 2
s I
)

(B.20)

The perturbation in (C.1) may now be expressed in terms of the transport

coefficients:

φGCE,s = − 1

n

∑

t

(ms/2kbTtr)
1/2 2nDstC s · dt

− 1

n
(ms/2kbTtr)

1/2 4Ktr,s

5kb

(
C 2
s −

5

2

)
C s · ∇ log Ttr

− 1

n
(ms/2kbTtr)

1/2 2Krot,s

mscrot

(
Erot − Erot

)
C s · ∇ log Trot

− 1

n
(ms/2kbTtr)

1/2 2Kvib,s

mscvib

(
Evib − Evib

)
C s · ∇ log Tvib

− 1

n

2µs
kbTtr

(
C sC s −

1

3
C 2
s I
)

: ∇v

(B.21)

We are now in position to express the perturbation, φGCE,s, in terms

of the species diffusion flux, shear stress and heat flux quantities that are

determined from the Navier-Stokes solution. Before doing this, we note that

the first term on the right hand side in (B.21) involves an inner product of

the particle thermal velocity vector C s = (Cs,x,Cs,y,Cs,z) and the vector dt,

which is known as the diffusion driving force and is defined as:

dt = ∇
(nt
n

)
+

(
nt
n
− ρt
ρ

)
∇ log p (B.22)

Additionally, we can simplify the first term in (B.21) by introducing a diffusion
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velocity, Vs, which takes the form:

Vs = −
∑

t

Dstdt −DT,s∇ log T (B.23)

Note that the diffusion velocity has contributions from both species diffusion

(driven by gradients in concentration and pressure) as well as thermal diffusion

(driven by gradients in temperature), but thermal diffusion is not considered

in this work. Using the definition of the inverse most probable thermal speed

for species s, βs =
√
ms/2kbTtr, we have for the perturbation φGCE,s:

φGCE,s = 2βsVs · C s −
1

n
βs

4Ktr,s

5kb

(
C 2
s −

5

2

)
C s · ∇ log Ttr

− 1

n
βs

2Krot,s

mscrot

(
Erot − Erot

)
C s · ∇ log Trot

− 1

n
βs

2Kvib,s

mscvib

(
Evib − Evib

)
C s · ∇ log Tvib

− 1

n

2µs
kbTtr

(
C sC s −

1

3
C 2
s I
)

: ∇v

(B.24)

After some trivial algebra, we can write the perturbation φGCE,s in terms of

the Navier-Stokes species diffusion, shear stress, and heat fluxes using the

following definitions and normalizations:

Ds =
βsρsVs

ρs
=
βsD

NS
s

ρs
(B.25)

τij,s =
µs
ps

(
∂jvi + ∂ivj −

2

3
∂kvkδij

)
=
τNSij,s

ps
(B.26)

qi,s = −2βs
ps
Ks∂iT =

2βqNSi,s
ps

(B.27)

q̃int,i,s = − 2βs
ρscintTint

Ks∂iTint =
2βsq

NS
int,i,s

ρscintTint
(B.28)
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Thus we arrive at our final expression of the perturbation φGCE,s:

φGCE,s(C s,Eint) = 2(Dx,sCx,s + Dy,sCy,s + Dz,sCz,s)

+ (qx,sCx,s + qy,sCy,s + qz,sCz,s)

(
2

5
C 2
s − 1

)

+ (q̃int,x,sCx,s + q̃int,y,sCy,s + q̃int,z,sCz,s)
(
Eint,s − Eint,s

)

−2 (Cx,sCy,sτxy,s + Cx,sCz,sτxz,s + Cy,sCz,sτyz,s)

−C 2
x,sτxx,s − C 2

y,sτyy,s − C 2
z,sτzz,s

(B.29)
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Appendix C

Formulation of Collision Integrals with

VHS/VSS Cross Sections

The collision integrals used in the calculation of the transport coeffi-

cients follow the form in Chapman and Cowling (Equation (9.33,5)) [12]. The

general form is given as:

Ωl
st(r) =

(
kbT

2πm∗st

)1/2 ∫ ∞

0

e
−
(

m∗
st

2kbT

)
g2
[(

m∗st
2kbT

)1/2

g

]2r+3

φlst

(
m∗st

2kbT

)1/2

dg,

(C.1)

where φlst represents a total (or averaged) cross-section, and is defined as:

φlst = 2π

∫
(1− coslχ)bdb. (C.2)

For the collision integrals considered in this work, the cross-sections are found

by letting l = 1, 2. The cross-section corresponding to the case l = 1 is the

diffusion cross-section:

φ1
st = 2π

∫
(1− cosχ)bdb = σM . (C.3)

The cross-section corresponding to the case involving l = 2 is known as the

viscous cross-section:

φ2
st = 2π

∫
(1− cos2χ)bdb = σµ. (C.4)
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In terms of the VHS model, these transport cross-sections in (C.3), (C.4)

are related to the total collision cross-section defined in Bird, Equation (2.32,

2.33)[2]:

σM = σT , (C.5)

σµ =
2

3
σT . (C.6)

If we instead consider the VSS model, the transport cross-sections are related

to the total collision cross-section (Bird, Equation (2.37, 2.38)) [2]:

σM =
2

α + 1
σT , (C.7)

σµ =
4α

(α + 1)(α + 2)
σT . (C.8)

In the following, we consider the formulation of Ω
(1)
st (1) for a VHS cross-section;

the remaining collision integrals may be determined in a similar manner. In

setting l = 1, r = 1 in (C.1), we have:

Ω
(1)
st (1) =

(
kbT

2πm∗st

)1/2 ∫ ∞

0

e
−
(

m∗
st

2kbT

)
g2
[(

m∗st
2kbT

)1/2

g

]5
σT

(
m∗st

2kbT

)1/2

dg.

(C.9)

Now, for VHS/VSS molecules, the total cross-section is inversely proportional

to a power of the relative speed. This relationship is expressed as (Bird,

Equation 3.60)[2]:

σT = σT,ref

(
g

gref

)−2ν
. (C.10)

Note that to remain consistent with notation, we’ve exchanged Bird’s rela-

tive collision speed cr, cr,ref with Chapman and Cowling’s notation of g, gref .
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Substituting (C.10) into (C.9) we obtain:

Ω
(1)
st (1) =

(
kbT

2πm∗st

)1/2 ∫ ∞

0

exp
−
(

m∗
st

2kbT

)
g2
[(

m∗st
2kbT

)1/2

g

]5

σT,ref

(
g

gref

)−2ν (
m∗st

2kbT

)1/2

dg.

(C.11)

We can re-arrange the terms in (C.11) to achieve a simplified form of

the collision integral in terms of the VHS parameters. First, we move the

reference quantities outside of the integral and write (C.11) as:

Ω
(1)
st (1) =

(
kbT

2πm∗st

)1/2

σT,refg
2ν
ref

(
m∗st

2kbT

)ν ∫ ∞

0

exp
−
(

m∗
st

2kbT

)
g2

[(
m∗st

2kbT

)1/2

g

]5−2ν (
m∗st

2kbT

)1/2

dg.

(C.12)

We recognize that twice the integral in (C.12) is the gamma function Γ(3−ν),

so we can write (C.12) as:

Ω
(1)
st (1) =

(
kbT

2πm∗st

)1/2

σT,refg
2ν
ref

(
m∗st

2kbT

)ν (
1

2

)
Γ(3− ν). (C.13)

The reference parameters present in (C.13) may be re-expressed in terms of

the VHS parameters dref , Tref and ω. Noting that ν = ω−1/2 (Bird, Equation

3.67)[2], we can make the following substitutions for σT,ref and g2ω−1ref (Bird,

Equation 4.61)[2]:

σT,ref = πd2ref , (C.14)

g2ω−1ref =

(
2kbTref
m∗

st

)ω−1/2

Γ(5/2− ω)
. (C.15)
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Thus we arrive at our final form for the collision integral Ω
(1)
st (1) in terms of

the VHS reference parameters:

Ω
(1)
st (1) =

π

2
d2ref

(
kbT

2πm∗st

)1/2(
Tref
T

)ω−1/2 [
Γ(7/2− ω)

Γ(5/2− ω)

]
. (C.16)
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Appendix D

Nelder-Mead Initial Conditions and

Convergence History Example

The Nelder-Mead algorithm is used to determine the set of VHS/VSS

parameters that provide the best fit to the transport coefficients determined

from the SCEBD/Gupta et al.-Yos models. The algorithm takes as input the

variable parameters being fit, and uses an iterative search procedure over the

parameter space to find the set of parameters which minimize the error in the

transport coefficients. The search procedure is stopped when the convergence

criteria, indicated by convergence in the values of the parameter set being fit,

as well as convergence in the function values, are met. [46, 59] In this work,

convergence is reached when the maximum value of the infinity norm of the

simplex (a measure of convergence in set of parameters) and the corresponding

difference in function values is less than or equal to 10−6.

Since the initial values used for the first iteration of the search are

somewhat arbitrary, it is important that the Nelder-Mead algorithm is capable

of producing a consistent best-fit set of parameters that is independent of the

parameter initialization. To demonstrate this, we consider the fitting of the α

parameters from the collision-averaged VHS/VSS parameter set (from Table
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4.1)). Recall that the common parameters dref and ω are determined from

the fitting of the viscosity and translational thermal conductivity using the

VHS model (in this case, the VSS reference diameters of O2, NO and O were

relaxed slightly from their VHS values).

Table D.1: Predicted values of α (collision-averaged) for various α0

α0 = 1.0 α0 = 1.5 α0 = 2.0

N2 1.3483 1.3483 1.3484
O2 1.5471 1.5471 1.5476
NO 1.6180 1.6181 1.6188
N 1.6083 1.6085 1.6081
O 1.9014 1.9014 1.9017

The α parameters were initialized to three different values of α =

1.0, 1.5, 2.0, which span the physical limits of this parameter. The result-

ing best-fit values from the Nelder-Mead search are shown in Table D.1 for

each species in the gas mixture, and the final parameter values obtained from

the independent searches are in very good agreement, to within three decimal

places. The corresponding convergence history of each parameter α is shown in

Figure D.1 (a)-(c). These figures show the relative error in the value of αs be-

tween the value at the current iteration and the final value. The Nelder-Mead

algorithm converges most rapidly in the case where α0=1.5 for each species.
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Figure D.1: Relative error of αs as a function of iteration.
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Appendix E

Computational Cost of CFD/Hybrid Solutions

The computational cost of the CFD and hybrid calculations are sum-

marized below in Table E.1 for the full three-dimensional simulations presented

in Chapter 5.

Table E.1: Computational Summary of CFD/Hybrid Simulations

CFD Time (hrs.) Cores Memory (MB) Cells

Asym. (60 km) 33 96 392 3.2× 106 —
Asym. (80 km) 30 96 323 2.6× 106 —
Sym. (80 km) 53 80 620 3.5× 106 —

Hybrid Time (hrs.) Cores Memory (GB) Cells Particles

Asym. (60 km) 471 1440 1.4 5.46× 108 2.3× 1010

Asym. (80 km) 144 1080 1.1 2.47× 108 1.7× 1010

Sym. (80 km) 115 720 1.1 1.19× 108 8.5× 109

The full CFD solutions are presented in terms of the total computa-

tional time, the total number of cores used and estimated memory required per

core, and the total number of finite volume cells comprising the computational

domain. The hybrid solution is detailed in terms of the total computational

time, the total number of cores used and (average) memory per core at steady

state, as well as the total number of steady-state simulation particles and

computational cells comprising the flowfield domain. The hybrid (DSMC) cal-
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culations presented here are currently the largest simulations generated using

the DAC code. It is emphasized, however, that these calculations were per-

formed using a modified version of the DAC solver and libraries, to allow for

calculations involving greater than 2.1× 109 simulated particles.
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