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A Spectral/radar signatures detected by several missionrsrom
Clementine(1994) and Lunar Prospector (1998) to LCROSS
(2010) and others- suggest presence of water in permanently
shadowed regions (cold traps) near the lunar poles.

A Origins of lunar water?
A Primordial water in the lunar interior.
A Interaction of surface minerals with solar wind protons.
A Volatile-rich comet/meteorite impacts.

A Our focus: comets as a source for coldapped water.
A ~1017 kg of material delivered through comet impacts over &.y.1
A Analytical?/numerical 3 models predict a significant fraction remains
gravitationally bound; could migrate to cold traps.
A Given a site indicative of a comet impact, what can we say about the
associated volatile falloutZHow much water could comets have
contributed to the lunar volatile inventory?

IMorgan andShemansky 1994;2Moseset al., 1999;30nget al, 2010 and Stewart et al, 2011.
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A Postimpact transport of H,O: global in scale + takes months.

A Prior models have studied:
A)YT EOEAI OI1 1 A OFEfield shorétén dintilatiorist. © T A A
A Global transport/loss processes ballistic (collisonless) hoppingf.

A Our hybrid SOVA/DSMC method can handle both limits + the
Intermediate stage.

A Simulations consider impact of comet (pure kD ice; r = 1 km)
at varying impact angles + speeds.

A Problem-specific features of the DSMC code:
A Diurnally varying surface temperature.
A 7 coldtraps3: 1 North Pole (1257 km?) + 6 South Pole(4575 km?2).
A Temperature-dependent residencetimes* for H,O on HO icematrix>.
A Photo-destruction probability 6.

10nget al, 2010; ?Butler, 1997; 3Elphic et al, 2007 and Nodaet al., 2008;*Langmuir, 1916 andFrenkel,
1924; °Sandford andAllamandola, 1993;°Huebner, 1992.
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A Problem-specific features of the DSMC code:
A Diurnally varying surface temperature.
A 7 coldtraps3: 1 North Pole (1257 km?) + 6 South Pole(4575 km?2).
A Temperature-dependent residencetimes* for H,O on HO icematrix>.
A Photo-destruction probability 6.
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A SOVAhydrocode: Smulates impact andhydrodynamic flow of relatively
densevaporized/molten comet and target material.

A DSMC(Direct Simulation Monte Carlo):
A Simulates water vapor only. Particle based methoedreate, move,
ET AAgh Al 11 EAA AT A OAILPIA OiTl,
A Transition to rarefied but collisional expansion into vacuum.
A DSMC is highly parallelizable.
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A At later times, material travelingat < VescapeD€QINS to fall back.

A Later simulations neglect escaping vapor.

A Due to scale of problem, our simulationare under-resolved, but
our DSMC implementatior should achieve reasonable accuracy.
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t = 6 hours ; 60 30 km/s impact
Contours interpolated to plane of impact
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A Vapor pressure over day side
O OOOAAAA OEI .

Antlpodal
convergenc

A Vapor transport through
day-side winds, driven by

\A\m Y. / North-South + daynight

c\é Number density (#/m®): 1E+10 1E+12 1E+14 1E+16 1E+18 N pressure gradients. Reach

E 0~ g W P J e
Computatlonal cells: P lat. x 2 long. x 2.5 km at South Pole within 13 hours.

surface (increasing exponentiallyto 100 km).
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Antipodal
convergencg A Vapor transport through
’ =l day-side winds, driven by
'l 1 North-South ° daynight
Number density (#m’): 1E+10 1E+12 1E+14 1E+16 1E+18 pressure grad|ents_ Reach
I Al = oy
Computational cells: 2 lat. x 2 long. x 2.5 km at South Pole within %3 hours.

surface (increasing exponentiallyto 100 km).
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shown. Fallback intensity
diminishes with time.

55‘5 7o A Only vapor at < 100 km altitude

Dawn terminator A Convergence of streamlines

sustains a temporarily thick
atmosphere aroundantipode.

Night Day A Over days to months: loss to
photo-destruction + deposition
on night side and in cold traps.

A Sublimation of night-side frost
rotating into sunlight sustains
| locally thick atmosphere along

Number density (#/m°) dawn terminator.
| =
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Night side frost evolution,

Inset animation shows

surface temperature.
rws

Dusk

Mass stuck (kg/km?)
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A Night-sideOAOEAAT AA OEI .
frost cover, with some, though not
significant, migration.

A O(10°) kglkm2k / j 18 p,Qicd |
(assumingmB  Pkg/m 3). Coldtraps
not shown here.

A Day-side winds and antipodal
convergence® AT 1T AAT OOAO]
poles and terminators Dusk/dawn
difference due to fallback on to
regolith with and without ice cover.

A Progressively decreasing fallback
preserves band along initial dusk
longitude.
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A ~28 % of comet mass is
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(~18 % comet mass)
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*for 45600 BO/Kmfsact. EH;O sublifmatingis—oniv. Texas at Austin, 2010.

impact | from mud _ N
A SOVA simulations stopped wnen: A 1nickest deposits near point of impact.

Al OOl 1T x © OOAOI I E /Shocks/antipodal convergence absent;
A&l O AOUI BOI OAO © evoRres to localized flow at terminator.

A Remaining water independently A Relative contribution of vapor plume +

OOAI EIl AOGAA £OI1 I QOdmaiAing ade to foldl trap AepdSifs-
at point of impact. Impact parameter dependent.



