Transport of Water in a Transient Impact-generated Lunar Atmosphere

Parvathy Prem^{1a}, N. A. Artemieva², D. B. Goldstein^{1a}, P. L. Varghese^{1a}, L. M. Trafton^{1b}, B. D. Stewart^{1a}

^{1a} Department of Aerospace Engineering & Engineering Mechanics and
^{1b} Department of Astronomy, The University of Texas at Austin;
² Planetary Science Institute, Tucson, Arizona.

45th Lunar and Planetary Science Conference 'Lunar Volatiles', March 19th 2014 Abstract # 2742

Supported by the NASA Lunar Advanced Science and Exploration Research program. Computations performed at the Texas Advanced Computing Center.

- Lunar ice why study comet impacts as a source of water in permanently shadowed regions (cold traps)?
 - Volatiles appear to be heterogeneously distributed^[1] between cold traps is this a consequence of delivery, as well as post-deposition, mechanisms?
 - Detection of CH₄, NH₃ and other compounds^[2] besides H₂O.
 - Only sub-surface signatures^[3] at some cold traps \Rightarrow episodic sources.
- Challenges to modeling the impact-delivery process:
 - Relatively dense (collisional) post-impact atmosphere ⇒ volatile transport no longer through only collisionless ballistic hops. What does this mean for the magnitude and spatial distribution of the volatile fallout?
 - Collisional transport ⇒ certain physical processes (e.g. photochemistry, radiation) become more important. How does this affect ice deposition?

[1] Gladstone *et al.*, 2012 (JGR) and Mitrofanov *et al.*, 2010 (Science); [2] Colaprete *et al.*, 2010 (Science); [3] Miller *et al.*, 2014 (Icarus).

Numerical Method

- SOVA hydrocode models impact/vaporization of a comet (r = 1 km) composed of pure water ice. DSMC, a particle-based technique, then tracks water vapor until escape, destruction or capture^[1].
- Simplifications in baseline simulations:
 - Optically thin ⇒ no attenuation of sunlight or re-absorption of radiation.
 - Photo-products (e.g. H, OH) and chemical reactions are not modeled.
 - Radiative heating of gas by lunar surface is neglected.

UNIVERSITY OF **Gas Dynamics in a Transient Atmosphere**

2742 Slide 3/9

20000

Water vapor cloud (DSMC) Water vapor cloud (DSMC) Water vapor cloud (DSMC) at 40 min; x_{max} = 7,500 km at 6 h; x_{max} = 20,000 km at 30 s; x_{max} = 1,000 km 1000 7500 20000 15000 750 5000 10000 500 2500 5000 Z (km) Z (km) Z (km) 250 -5000 -2500 -10000 -250 -5000 -15000 1E+10 1E+12 -7500 -7500 -20000 -20000 -500 -250 1000 -5000 -2500 5000 7500 -10000 X (km) X (km) X (km)

Colors represent speed; Scale: 0 to 20,000 m/s; Streamlines superimposed.

Colors represent speed; Scale: 0 to 4,000 m/s; Streamlines superimposed.

Colors represent density; Scale: 10¹² to 10¹⁸ m⁻³; Streamlines superimposed.

- Rapid ($v \ge v_{esc}$) initial outward expansion; within 1 h after impact, gravitationally bound vapor begins to fall back to lunar surface.
- Fallback is bounded by an expanding, ~ spherical fallback envelope.

Gas Dynamics in a Transient Atmosphere

 Antipodal convergence leaves a surface footprint on the night side surface (for this impact location) where frost density ↓ by 10 x across ~200 km.

2742

Slide 4/9

- Pressure-driven day side winds lead to directional streaming (vs. molecular random walk) to night side and/or cold traps.
- As atmosphere gradually approaches collisionless limit, shock structures and winds dissipate.

Gas Dynamics in a Transient Atmosphere

 Antipodal convergence leaves a surface footprint on the night side surface (for this impact location) where frost density ↓ by 10 x across ~200 km.

2742

Slide 4/9

- Pressure-driven day side winds lead to directional streaming (vs. molecular random walk) to night side and/or cold traps.
- As atmosphere gradually approaches collisionless limit, shock structures and winds dissipate.

Shielding from Photodestruction

Cross-section of vapor cloud in equatorial plane, 6 h after impact, illuminated as marked. Unattenuated photo rate $\simeq 1.2 \times 10^{-5} \text{ s}^{-1}$

- Photodestruction is the primary loss process.
- In an optically thin case, shielding is negligible - not the case after an impact.
- Implementation:
- Column density in direction of sunlight is calculated (on a coarser grid) at regular intervals, thus accounting for motion of Sun and changes in atmospheric structure.
- Photodestruction rate (from Crovisier, 1989) is attenuated accordingly.

Shielding from Photodestruction

Cross-section of vapor cloud in equatorial plane, 6 h after impact, illuminated as marked. Unattenuated photo rate $\simeq 1.2 \times 10^{-5} \text{ s}^{-1}$

- Photodestruction is the primary loss process.
- In an optically thin case, shielding is negligible - not the case after an impact.
- Taking shielding into consideration, the overall destruction rate ↓ ~30 x over the time interval 1 to 3 h after impact.
- Long-term influence of shielding on ice deposition (from impact till vapor cloud becomes optically thin) - to be studied.

Photo-products and Chemistry

2742 Slide 6/9

 $H_2O + h\nu → H_2 + O;$ $H_2O + h\nu → H + OH;$ $OH + OH → H_2O + O;$ $O_2 + h\nu → O + O;$ Rate expressions from Huebner (1992), Tsang &Hampson (1986) and Giguere & Huebner (1978).

- Do photo-products matter? Simple 0D model can offer insights (similar approach to that of Berezhnoi & Klumov, 2002).
- Actual post-impact scenario: 3D, non-equilibrium rates, lighter species may escape calls for detailed modeling.

Photo-products and Chemistry

2742 Slide 6/9

 $H_2O + h\nu → H_2 + O;$ $H_2O + h\nu → H + OH;$ $OH + OH → H_2O + O;$ $O_2 + h\nu → O + O;$ Rate expressions from Huebner (1992), Tsang &Hampson (1986) and Giguere & Huebner (1978).

- Do photo-products matter? Simple OD model can offer insights (similar approach to that of Berezhnoi & Klumov, 2002).
- Actual post-impact scenario: 3D, non-equilibrium rates, lighter species may escape calls for detailed modeling.
- Key implications:
- Recombination reactions can slow the H₂O loss rate.
- Non-condensables (like O₂) can inhibit condensation (as seen in Moore *et* al., 2009; mentioned by Arnold, 1979).

Radiative Energy Transfer

• Implementation:

- Solar IR: Attenuation handled by extending shielding algorithm.
- Radiation within vapor cloud: Amount of energy spontaneously emitted as molecules within a cell cool can be calculated analytically (Crovisier, 1984).
 Monte Carlo method (e.g. Sohn *et* al., 2012) used to propagate "bundles" of energy through gas until complete absorption. (Validation in progress.)
- IR radiation from lunar surface: Monte Carlo method can be extended to handle surface emission. (Work in progress.)

• Preliminary observations:

- Reabsorption of radiation originating within vapor cloud increases gas temperature at all altitudes → affects strength of shock structures.
- This in turn can change day-side wind speeds/patterns and the surface footprint of the antipodal shock.

- Volatile-rich impactors can generate a relatively thick transient lunar atmosphere. While this atmosphere is collisional:
 - Volatile transport occurs through pressure-driven winds.
 - Antipodal convergence of vapor can leave a discernable surface footprint.
- Physical processes that are usually negligible in the collisionless lunar exosphere, become important after an impact:
 - Shielding allows a greater fraction of water to migrate to cold traps.
 - Photochemistry → competing effects (recombination vs. non-condensables).
 - Radiative energy transfer influences atmospheric structure, and thereby, deposition patterns.

• Future work and further questions:

- Complete implementation of DSMC radiation and chemistry models.
- How do the radiation field and chemistry change when we consider a comet composed of dust, and volatile species other than H₂O?
- Modeling surface roughness and topography could provide further insight into deposition at individual cold traps.