Transport of Water in a Transient
Impact-generated Lunar Atmosphere

Parvathy Prem??, N. A. Artemieva?, D. B. Goldstein??,
P. L. Varghese!?, L. M. Trafton'?, B. D. Stewart?2

1a Department of Aerospace Engineering & Engineering Mechanics and
1b Department of Astronomy, The University of Texas at Austin;
2 Planetary Science Institute, Tucson, Arizona.

45t Lunar and Planetary Science Conference
‘Lunar Volatiles’, March 19t 2014
Abstract # 2742

Supported by the NASA Lunar Advanced Science and Exploration Research program.
Computations performed at the Texas Advanced Computing Center.



THE UNIVERSITY OF . . #2742
TEXAS Motivation Slide 1/9

—— AT AUSTIN —

* Lunar ice - why study comet impacts as a source of water in
permanently shadowed regions (cold traps)?

* \olatiles appear to be heterogeneously distributed!!! between cold traps - is
this a consequence of delivery, as well as post-deposition, mechanisms?

* Detection of CH,, NH, and other compounds!?! besides H,0.

* Only sub-surface signatures!3! at some cold traps = episodic sources.

* Challenges to modeling the impact-delivery process:

* Relatively dense (collisional) post-impact atmosphere = volatile transport
no longer through only collisionless ballistic hops. What does this mean
for the magnitude and spatial distribution of the volatile fallout?

e Collisional transport = certain physical processes (e.g. photochemistry,
radiation) become more important. How does this affect ice deposition?

[1] Gladstone et al., 2012 (JGR) and Mitrofanov et al., 2010 (Science); [2] Colaprete et al.,
2010 (Science); [3] Miller et al., 2014 (Icarus).
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* SOVA hydrocode models impact/vaporization of a comet (r = 1 km)
composed of pure water ice. DSMC, a particle-based technique,
then tracks water vapor until escape, destruction or capturel,

e Simplifications in baseline simulations:
e Optically thin = no attenuation of sunlight or re-absorption of radiation.
* Photo-products (e.g. H, OH) and chemical reactions are not modeled.
e Radiative heating of gas by lunar surface is neglected.
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Streamlines superimposed. Streamlines superimposed. Streamlines superimposed.

* Rapid (v > v, ) initial outward expansion; within 1 h after impact,
gravitationally bound vapor begins to fall back to lunar surface.

 Fallback is bounded by an expanding, ~ spherical fallback envelope.
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* Antipodal convergence
leaves a surface footprint
on the night side surface
(for this impact location)
where frost density (| by
10 x across ~200 km.

* Pressure-driven day side
winds lead to directional
streaming (vs. molecular

Antipodal .
convergence | random walk) to night

side and/or cold traps.

* As atmosphere gradually
approaches collisionless
limit, shock structures
and winds dissipate.
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* Antipodal convergence

Point of impact z
leaves a surface footprint
: X on the night side surface
’ (for this impact location)
Day where frost density | by

10 x across ~200 km.

* Pressure-driven day side

Surfacarchork winds lead to directional

pressure-driven winds streaming (vs. molecular
random walk) to night
side and/or cold traps.

Antipodal
e * As atmosphere gradually
1\ approaches collisionless
B - limit, shock structures

Number density (#/m°): 1E+10 1E+12 1E+14 1E+16 1E+18 . .
and winds dissipate.
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“Blocks” are
artefacts of
column density
calculation

Photo rate (s'): 1E-12 1E-11 1E-10 1E;09 1E-08 1E-07 1E-06 1E-05

Cross-section of vapor cloud in equatorial plane,
6 h after impact, illuminated as marked.
Unattenuated photo rate ~ 1.2 x 10> s!
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Photodestruction is the
primary loss process.

In an optically thin case,
shielding is negligible - not
the case after an impact.

Implementation:

Column density in direction
of sunlight is calculated (on a
coarser grid) at regular
intervals, thus accounting for
motion of Sun and changes in
atmospheric structure.

Photodestruction rate (from
Crovisier, 1989) is attenuated
accordingly.
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“Blocks” are
artefacts of
column density
calculation

Photo rate (s'): 1E-12 1E-11 1E-10 1E;09 1E-08 1E-07 1E-06 1E-05

Cross-section of vapor cloud in equatorial plane,
6 h after impact, illuminated as marked.
Unattenuated photo rate ~ 1.2 x 10> s!

* Taking shielding into
consideration, the overall
destruction rate 4 ~30 x
over the time interval 1 to
3 h after impact.

* Long-term influence of
shielding on ice deposition
(from impact till vapor
cloud becomes optically
thin) - to be studied.
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* Do photo-products matter?
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H,O+hv>H,+0; H,0+hv->H+OH;
OH+OH->H,0+0; OH+hv->O0+H;
0O,+hv>0+0; OH+O0O->H+O,

Rate expressions from Huebner (1992), Tsang &

Hampson (1986) and Giguere & Huebner (1978).
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10° T
/ e Key implications:
1001 101 102 103 104 105 106 - Recombination reactions can
Time (s) slow the H,0 loss rate.
H,0+hv > H,+0; H,0+hv->H+OH; - Non-condensables (like 0,) can
OH+OH->H,0+0; OH+hv->O+H; inhibit condensation (as seen in

0O,+hv>0+0; OH+O0O->H+O,
Rate expressions from Huebner (1992), Tsang &
Hampson (1986) and Giguere & Huebner (1978).

Moore et al., 2009; mentioned by
Arnold, 1979).
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: Mid-IR to Microwave

Mid-IR to Microwave < H,0 rotational energy
UV — photo-destruction of H,0

. from H,0 molecules — ]
*., other H,0 molecules \\
| Cﬁ | | Attenuating H,0 atmosphere
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Mid-IR to Microwave + UV
from Sun — H,0 molecules
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Mid-IR to Microwave

from Moon — H,O molecules
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* Implementation:
- Solar IR: Attenuation handled by extending shielding algorithm.

- Radiation within vapor cloud: Amount of energy spontaneously emitted as
molecules within a cell cool can be calculated analytically (Crovisier, 1984).
Monte Carlo method (e.g. Sohn et al., 2012) used to propagate “bundles” of
energy through gas until complete absorption.

- IR radiation from lunar surface: Monte Carlo method can be extended to
handle surface emission. (Work in progress.)
* Preliminary observations:

- Reabsorption of radiation originating within vapor cloud increases gas
temperature at all altitudes - affects strength of shock structures.

- This in turn can change day-side wind speeds/patterns and the surface
footprint of the antipodal shock.
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* Volatile-rich impactors can generate a relatively thick transient lunar
atmosphere. While this atmosphere is collisional:

* Volatile transport occurs through pressure-driven winds.
* Antipodal convergence of vapor can leave a discernable surface footprint.

* Physical processes that are usually negligible in the collisionless lunar
exosphere, become important after an impact:

e Shielding allows a greater fraction of water to migrate to cold traps.
* Photochemistry - competing effects (recombination vs. non-condensables).
e Radiative energy transfer influences atmospheric structure, and thereby,

deposition patterns.

* Future work and further questions:

Complete implementation of DSMC radiation and chemistry models.
How do the radiation field and chemistry change when we consider a comet
composed of dust, and volatile species other than H,0?

Modeling surface roughness and topography could provide further insight
into deposition at individual cold traps.



