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ALunar ice - why study comet impacts as a source of water in
permanently shadowed regions (cold traps)?

A Volatiles appear to be heterogeneously distributed!!! between cold traps - is
this a consequence of delivery, as well as post-deposition, mechanisms?

A Detection of CH,, NH, and other compounds!? besides H.0.

A Onlysub-surface signatures!3! at some cold trapst episodic sources.

AcChallenges to modeling the impact-delivery process:

A Relatively dense (collisional) post-impact atmosphere + volatile transport
no longer through only collisionless ballistic hops. What does this mean
for the magnitude and spatial distribution of the volatile fallout?

A Collisional transport + certain physical processes (e.g. photochemistry,
radiation) become more important. How does this affect ice deposition?

[1] Gladstone et al., 2012 (JGR) and Mitrofanov et al., 2010 (Science); [2] Colaprete et al,,
2010 (Science); [3] Miller et al., 2014 (lcarus).
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ASOVA hydrocode models impact/vaporization of a comet (r = 1 km)
composed of pure water ice. DSMC, a particle-based technique,
then tracks water vapor until escape, destruction or capturel,

ASimplifications in baseline simulations:
A Optically thint no attenuation of sunlight or re-absorption of radiation.
A Photo-products (e.g. H, OH) and chemical reactions are not modeled.
A Radiative heating of gas by lunar surface is neglected.
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Streamlines superimposed. Streamlines superimposed. Streamlines superimposed.

ARapid (v > v, ) initial outward expansion; within 1 h after impact,
gravitationally bound vapor begins to fall back to lunar surface.

AFallback is bounded by an expanding, ~ spherical fallback envelope.
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A Antipodal convergence
leaves a surface footprint
on the night side surface
(for this impact location)
where frost density (| by
10 x across ~200 km.

A Pressure-driven day side
winds lead to directional
streaming (vs. molecular

Antipodal .
convergence | random walk) to night

side and/or cold traps.

A As atmosphere gradually
approaches collisionless
limit, shock structures
and winds dissipate.
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where frost density (| by
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and winds dissipate.
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“Blocks” are
artefacts of
column density
calculation

Photo rate (s'): 1E-12 1E-11 1E-10 1E;09 1E-08 1E-07 1E-06 1E-05

Cross-section of vapor cloud in equatorial plane,
6 h after impact, illuminated as marked.
Unattenuated photo rate § 1.2 x 10 s!

A Photodestruction is the
primary loss process.

A In an optically thin case,
shielding is negligible - not
the case after an impact.

A Implementation:

- Column density in direction
of sunlight is calculated (on a
coarser grid) at regular
intervals, thus accounting for
motion of Sun and changes in
atmospheric structure.

- Photodestruction rate (from
Crovisier, 1989) is attenuated
accordingly.

Slide 5/9
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A Taking shielding into
consideration, the overall
destruction rate 4 ~30 x
over the time interval 1 to
3 h after impact.

“Blocks” are
artefacts of
column density
calculation

W A Long-term influence of
Photo rate (S.1)Z 1E-12 1E-11 1E-10 1E-09 1E-08 1E-07 1E-06 1E-05

shielding on ice deposition

Cross-section of vapor cloud in equatorial plane, (from impact till vapor
6 h after impact, illuminated as marked. cloud becomes optically
Unattenuated photo rate § 1.2 x 10° s thin) - to be studied.
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T g0 T A Do photo-products matter?
% : /7/< Simple 0D model can offer
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B / ! O I of Berezhnoi & Klumov, 2002).
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H,O+ht > H,+0; H,0+hd-> H+OH;
OH+OH->H,0+0; OH+hd-> O+H;
0,+ht>0+0;, OH+O0O->H+O,

Rate expressions from Huebner (1992), Tsang &
Hampson (1986) and Giguere & Huebner (1978).
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10° T
/ A Key implications:
1001 101 102 103 104 105 106 - Recombination reactions can
Time (s) slow the H,0 loss rate.
H,0+ht > H,+0; H,0+ht - H+OH; - Non-condensables (like 0,) can
OH+OH->H,0+0; OH+ht->O0+H; inhibit condensation (as seen in

0,+ht>0+0;, OH+O0O->H+O,
Rate expressions from Huebner (1992), Tsang &
Hampson (1986) and Giguere & Huebner (1978).

Moore et al., 2009; mentioned by
Arnold, 1979).
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: Mid-IR to Microwave

Mid-IR to Microwave < H,0 rotational energy
UV — photo-destruction of H,0

. from H,0 molecules — ]
*., other H,0 molecules \\
| Cﬁ | | Attenuating H,0 atmosphere
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Mid-IR to Microwave + UV
from Sun — H,0 molecules

4
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Mid-IR to Microwave

from Moon — H,O molecules




THE UNIVERSITY OF

TEXAS Radiative Energy Transfer

#2742
—— AT AUSTIN — Slide 8/9

A Implementation:
- Solar IR: Attenuation handled by extending shielding algorithm.

- Radiation within vapor cloud: Amount of energy spontaneously emitted as
molecules within a cell cool can be calculated analytically (Crovisier, 1984).
Monte Carlo method (e.g. Sohn et al., 2012) used to propagate “bundles” of
energy through gas until complete absorption.

- IR radiation from lunar surface: Monte Carlo method can be extended to
handle surface emission. (Work in progress.)
A Preliminary observations:

- Reabsorption of radiation originating within vapor cloud increases gas
temperature at all altitudes - affects strength of shock structures.

- This in turn can change day-side wind speeds/patterns and the surface
footprint of the antipodal shock.
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A Volatile-rich impactors can generate a relatively thick transient lunar
atmosphere. While this atmosphere is collisional:

A Volatile transport occurs through pressure-driven winds.
A Antipodal convergence of vapor can leave a discernable surface footprint.

A Physical processes that are usually negligible in the collisionless lunar
exosphere, become important after an impact:

A Shielding allows a greater fraction of water to migrate to cold traps.

A Photochemistry > competing effects (recombination vs. non-condensables).

A Radiative energy transfer influences atmospheric structure, and thereby,
deposition patterns.

A Future work and further questions:

A Complete implementation of DSMC radiation and chemistry models.

A How do the radiation field and chemistry change when we consider a comet
composed of dust, and volatile species other than H,0?

A Modeling surface roughness and topography could provide further insight
into deposition at individual cold traps.



