Comets as a source of lunar volatiles: tracking water from impact to permanent shadows

Parvathy Prem^{1a}, N. A. Artemieva², D. B. Goldstein^{1a}, P. L. Varghese^{1a} and L. M. Trafton^{1b}

^{1a} Department of Aerospace Engineering & Engineering Mechanics and
 ^{1b} Department of Astronomy, The University of Texas at Austin;
 ² Planetary Science Institute, Tucson, Arizona.

5th Lunar and Small Bodies Graduate Conference July 20th 2014

Supported by the NASA Lunar Advanced Science and Exploration Research program. Computations performed at the Texas Advanced Computing Center.

Background & Motivation

- Several missions, from Clementine (1994) to LRO/LCROSS (2009 - present), have observed signs of lunar water, particularly in regions of permanent shadow (cold traps) near the poles.
- The Moon's orientation relative to the Sun, low thermal conductivity of the regolith and the absence of atmosphere → temperatures cold enough to trap a range of species.
- Origins of cold-trapped water?
 - Primordial water in the lunar interior.
 - Interaction between solar wind protons and surface.
 - Volatile-rich comet/meteorite impacts.

- Why study comets?
 - Volatiles appear to be heterogeneously distributed^[1] between cold traps is this a consequence of delivery, as well as post-deposition, mechanisms?
 - Detection of CH₄, NH₃ and other compounds^[2] besides H₂O at Cabeus.
 - Isolated sub-surface H signatures^[3] at some PSR's \Rightarrow episodic sources?
- Challenges to modeling the impact-delivery process:
 - Relatively dense (collisional) post-impact atmosphere ⇒ volatile transport no longer only through collisionless ballistic hops. What does this mean for the magnitude and spatial distribution of the volatile fallout?
 - Collisional transport ⇒ certain physical processes (e.g. photochemistry, radiation) are affected. How does this affect ice deposition?

[1] Gladstone *et al.*, 2012 (JGR) and Mitrofanov *et al.*, 2010 (Science); [2] Colaprete *et al.*, 2010 (Science); [3] Miller *et al.*, 2014 (Icarus).

Computational Method

- SOVA hydrocode models impact and hydrodynamic flow of comet and target melt/vapor, out to 20 km from point of impact.
- **DSMC method** tracks representative water molecules, out to 40,000 km from lunar surface, until escape, destruction or capture.
- Comet: 1 km radius, pure H₂O ice. Impact at 60°, 30 km/s.

See Stewart et al., 2011 (Icarus), Prem et al., 2014 (Icarus, under revision) and ref.s therein.

- Tracking water from impact to permanent shadows:
 - Molecules move under variable gravity, interacting through collisions.
 - Diurnally varying surface temperature (basic map).
 - Temperature-dependent surface residence times for H₂O molecules.
- Loss and capture:
 - UV light is attenuated as it passes through atmosphere : sunward regions are preferentially photo-destroyed, lower layers are shielded.
 - Seven cold traps: 1 at North Pole (1257 km²), 6 at South Pole (4575 km²).

• Current simplifications:

- Only H₂O, in the vapor phase, is modeled.
- Photo-products (e.g. H, OH) and chemical reactions are not modeled.
- Simplified treatment of radiative heat transfer spontaneously emitted radiation escapes, solar infrared absorbed unattenuated, heating of vapor by lunar surface not modeled.

See Stewart et al., 2011 (Icarus), Prem et al., 2014 (Icarus, under revision) and ref.s therein.

Atmospheric Structure & Evolution

Water vapor cloud (DSMC)

LGC2014 Slide 5/10

Water vapor cloud (DSMC)

UNIVERSITY OF

at 30 s; x_{max} = 1,000 km

Speed (0 to 20,000 m/s) Arrows mark flow direction Viewed in plane of impact Speed (0 to 4,000 m/s) Arrows mark flow direction Viewed in plane of impact Density (10¹² to 10¹⁸ m⁻³) Arrows mark flow direction Viewed in plane of impact

- Rapid ($v \ge v_{esc}$) initial outward expansion; within 1 h after impact, gravitationally bound vapor begins to fall back to lunar surface.
- Fallback is bounded by an expanding, ~ spherical fallback envelope.

Atmospheric Structure & Evolution

LGC2014 Slide 6/10

• Collisional nature of the atmosphere gives rise to:

THE UNIVERSITY OF

- Antipodal shock drives a concentrated jet of water vapor down to surface.
- Pressure driven day-side winds → directional streaming vs. random walk; winds travel from day-side to night-side, and north to south.

These slowly dissipate as atmosphere approaches the collisionless limit.

Cometary Rainfall?

- Day-side residence times O(1 µs) ⇒ molecules remain aloft. Infalling vapor travels at supersonic speeds, causing a low-altitude surface shock → vapor is compressed, slowed, turned and heated.
- Cold, dense, supersaturated layer sandwiched between shock- and surface-heated vapor ⇒ condensation could occur in the presence of dust → day-side mist or precipitation. Requires more detailed treatment of radiative heat transfer, gas-dust interactions.

Transient Night-side Frosts

- Frost density is highest around the point of impact and the antipode.
 O(10⁵ kg/km²) ≡ ~0.1 mm water ice.
- Impact at North Pole → thicker deposits at south polar cold traps.
- Antipodal shock footprint remains after shock has dissipated.
- Dawn terminator: frost sublimating at sunrise pushed back across to the night-side by day-side winds.
- Dusk terminator: band along initial dusk terminator records diminishing intensity of fallback with time.

Non-Uniform Cold Trapping

LGC2014 Slide 9/10

THE UNIVERSITY OF

		6 hours		72 hours	
Cold trap	Area (km²)	Water captured (kg/km²)	Relative magnitude	Water captured (kg/km²)	Relative magnitude
Cabeus Faustini de Gerlache Haworth Shackleton Shoemaker	897 697 314 1295 201 1170	$\begin{array}{c} 4.65 \times 10^{5} \\ 6.09 \times 10^{5} \\ 8.31 \times 10^{5} \\ 5.75 \times 10^{5} \\ 2.20 \times 10^{6} \\ 6.84 \times 10^{5} \end{array}$	<u>1.00</u> 1.31 1.79 1.24 <u>4.73</u> 1.47	$\begin{array}{c} 2.80 \times 10^{6} \\ 2.86 \times 10^{6} \\ 3.85 \times 10^{6} \\ 3.01 \times 10^{6} \\ 6.49 \times 10^{6} \\ 2.39 \times 10^{6} \end{array}$	1.17 1.20 1.61 1.26 <u>2.72</u> <u>1.00</u>

- **Contrast** ulletbetween cold traps \downarrow in time as antipodal shock vanishes and night-side frost migrates.
- Nature of non-• uniformities depends on impact location.

80°S

Are non-۲ uniformities preserved as atmosphere becomes collisionless?

- Volatile transport in a transient atmosphere is qualitatively different (from collisionless hopping), characterized by shocks, pressure-driven winds and markedly non-uniform cold-trapping at least in the short term (~ days after impact).
- Other influences and questions:
 - **Impact parameters** determine quantity of gravitationally bound vapor, and thereby shock strengths, atmospheric structure and deposition patterns.
 - Other species (impact-delivered or arising from photochemical processes) and dust could significantly affect heat transfer, degree of shielding and other aspects of the transport/trapping process e.g. non-condensable species could inhibit the condensation of water.
 - How does **surface roughness**, which causes large variations in temperature over small scales, affect volatile migration?
 - How do winds interact with **topography** at specific craters?