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 The Moon’s rough surface, insulating regolith, thin atmosphere
-> large temperature variations over very small scales (< 1 cm).*

What does this mean for volatile transport on the Moon and
other nominally airless bodies?

* |rrespective of source of volatiles (solar wind, comets), surface
temperature determines:

* Surface residence time of molecules.
* Rate of volatile migration to cold traps.
* Gas dynamic scale height.

* Most recently investigated by Bandfield et al. (2015), Hayne et al. (2013).
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Smith, 1967.

________ n mean plane e At radiative equilibrium
RMS slope with solar radiation and/or
angle = 20° surrounding surfaces.

* Molecules landing on day-side sample a distribution of slopes.
Night-side isothermal at small scales. (Bandfield et al., 2015.)

» Surface orientation and shadowing probability determine
temperature, T, . Generally, residence time (t,.) x exp(1/Tsu,f).
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i [H.0] (Sandford & Allamandola, 1993)
. [Arf(Grava et al, 2015)
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* |Importance of roughness depends on how strongly the species
residence time varies with surface temperature.
e.g. Ar residence times vary less with temperature (vs. H,0)
- roughness relatively less important for Ar.
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on average residence hme for H O
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Bolometric temperature (K): 80 140 200 260 320 380
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Influence of roughness
least on night-side
(isothermal at small
scales) and at lower solar
incidence angles (fewer/
warmer shadows).
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* Roughness model is incorporated into detailed simulations of
volatile transport after a comet

impact (Prem et al., 2015). “"’”
COMET" /jg
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* H,O is the only modeled volatile. ;\\~

 Comet radius 1 km.
* Impact at North Pole @ 30 km/s,
60° impact angle.

 How does roughness affect — | Spesd (n)
= ‘0” l i
2000 4000 6000 8000 10000

* Rate of cold trap capture?
* Rate of photodestruction?

* Transient deposition patterns?
* Impact generates a vapor cloud - vapor falls back to the surface -
transient frost cover where surface is sufficiently cold.

7500 -5000 -2500 O 2500 5000 7500
X (km)




THE UNIVERSITY L

. . #107.11
TEXAS Transient Deposition Patterns Slide 7/8

Transient HZO frost -:I:—l::.

surface density (Kg/km?®): 2.0E+01 2.0E+02 2.0E+03 2.0E+04
Nl —

(&)
o

Smooth Smooth
surface surface

.
L.
s 0
=
-
T
-

o))
o

7,
v
o e,

100 150 200

1 hour after impactat NP | Longitude (°)




THE UNIVERSITY L

. . #107.11
TEXAS Transient Deposition Patterns Slide 7/8

Transient HZO frost -:I:—l::.

surface density (Kg/km?®): 2.0E+01 2.0E+02 2.0E+03 2.0E+04
NP ' -

(&)
o

Rough Rough
surface surface

.
L.
s 0
=
-
T
-

v d “; \"'t.‘
\" :
1*(‘-4'}"

"‘»

’ xt!*“ ~H“b

o))
o

wn
v
o Y IR

300




THE UNMIVERSTTY L
TEXAS Summary & Conclusions #glildo:é/l:

— AT AUSTIN —

* Small-scale roughness “blurs” the terminators:

 Shifts effective terminator by ~3° longitude at the equator i.e. a shift of
~6 hours. For perspective, Hurley et al.’s (2015) approximation of large-
scale topography blurred terminators by ~15 hours.

* Relevance for exospheric observations near terminators (useful in
constraining gas-surface interactions).

* Late-term transport/migration to poles after a comet impact is largely
driven by sublimation along the dawn terminator.
* There is also increased residence times around poles.
* Could have implications for transport of present-day polar volatiles and

polar exploration missions.

* May also be consequences for rates of cold-trapping and
photodestruction (investigation in progress).
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e @?” eoT* = (1 — a)Fs cosy; + F,, .4 COSO,
? b\&%’?’/ Shadowed surface elements:
| %&\ goT*=F., 44 COSO,
;00";/{. local surface normal Shadowing probability:

‘ at surface element i
T ) P.hadow =S (rms slope, 6,)

(from Smith, 1967)

———————————————————————— mean plane
Molecule residence time:

t,es ¢ exp(1/T))

Stochastic model
of “sub-pixel” roughness

T, 2T, min Freragand T; .. are best-fit constants to

F = solar flux match observed bolometric temperature.
F,..,.q €0SO, = flux from surroundings  For rms slope angle =20°, e =0.95and a =
(re-radiated solar energy) 0.11,F,,,y=320W/m?and T, ... = 130 K.
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Bolmetric temperature (K) -:I:I:I:I:.

with roughness model: 80 140 200 260 320 380

* For physical consistency, surface
temperature model calibrated to
match Hurley et al.’s (2015) fit to
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T L :
* Errorsin model calibration are less
than those inherent in neglecting
large-scale topography.
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Ratio of rﬂugh zuface l}_ to -:I:I:I:-

smooth surface t__forAr: 10 100 1000 10000 100000
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Ratio of rﬂugh zuface l}_ to -:I:I:I:-

smooth surface t__forAr: 10 100 1000 10000 100000

* |Importance of roughness depends
on how strongly the species
residence time varies with surface
temperature.
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Ar residence times vary less with
temperature compared to H,0 .-
roughness less important for Ar.
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